Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   GIF version

Theorem lflnegcl 39068
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 39139, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflnegcl (𝜑𝑁𝐹)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem lflnegcl
Dummy variables 𝑦 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lflnegcl.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
32lmodring 20774 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ringgrp 20147 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
76adantr 480 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ Grp)
81adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
9 lflnegcl.g . . . . . 6 (𝜑𝐺𝐹)
109adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
11 simpr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
12 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
13 lflnegcl.v . . . . . 6 𝑉 = (Base‘𝑊)
14 lflnegcl.f . . . . . 6 𝐹 = (LFnl‘𝑊)
152, 12, 13, 14lflcl 39057 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
168, 10, 11, 15syl3anc 1373 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
17 lflnegcl.i . . . . 5 𝐼 = (invg𝑅)
1812, 17grpinvcl 18919 . . . 4 ((𝑅 ∈ Grp ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
197, 16, 18syl2anc 584 . . 3 ((𝜑𝑥𝑉) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
20 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2119, 20fmptd 7086 . 2 (𝜑𝑁:𝑉⟶(Base‘𝑅))
22 ringabl 20190 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
234, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
2423adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Abel)
254adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
26 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑘 ∈ (Base‘𝑅))
271adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑊 ∈ LMod)
289adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝐺𝐹)
29 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
302, 12, 13, 14lflcl 39057 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ (Base‘𝑅))
3127, 28, 29, 30syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑦) ∈ (Base‘𝑅))
32 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3312, 32ringcl 20159 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
3425, 26, 31, 33syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
35 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
362, 12, 13, 14lflcl 39057 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝑅))
3727, 28, 35, 36syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑧) ∈ (Base‘𝑅))
38 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
3912, 38, 17ablinvadd 19737 . . . . . 6 ((𝑅 ∈ Abel ∧ (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4024, 34, 37, 39syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
41 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
42 eqid 2729 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4313, 41, 2, 42, 12, 38, 32, 14lfli 39054 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4427, 28, 26, 29, 35, 43syl113anc 1384 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4544fveq2d 6862 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))))
4612, 32, 17, 25, 26, 31ringmneg2 20214 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))) = (𝐼‘(𝑘(.r𝑅)(𝐺𝑦))))
4746oveq1d 7402 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4840, 45, 473eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4913, 2, 42, 12lmodvscl 20784 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5027, 26, 29, 49syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5113, 41lmodvacl 20781 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
5227, 50, 35, 51syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
53 2fveq3 6863 . . . . . 6 (𝑥 = ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
54 fvex 6871 . . . . . 6 (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) ∈ V
5553, 20, 54fvmpt 6968 . . . . 5 (((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
5652, 55syl 17 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
57 2fveq3 6863 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑦)))
58 fvex 6871 . . . . . . . 8 (𝐼‘(𝐺𝑦)) ∈ V
5957, 20, 58fvmpt 6968 . . . . . . 7 (𝑦𝑉 → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6029, 59syl 17 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6160oveq2d 7403 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝑁𝑦)) = (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))))
62 2fveq3 6863 . . . . . . 7 (𝑥 = 𝑧 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑧)))
63 fvex 6871 . . . . . . 7 (𝐼‘(𝐺𝑧)) ∈ V
6462, 20, 63fvmpt 6968 . . . . . 6 (𝑧𝑉 → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6535, 64syl 17 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6661, 65oveq12d 7405 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
6748, 56, 663eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6867ralrimivvva 3183 . 2 (𝜑 → ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6913, 41, 2, 42, 12, 38, 32, 14islfl 39053 . . 3 (𝑊 ∈ LMod → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
701, 69syl 17 . 2 (𝜑 → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
7121, 68, 70mpbir2and 713 1 (𝜑𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  invgcminusg 18866  Abelcabl 19711  Ringcrg 20142  LModclmod 20766  LFnlclfn 39050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-lmod 20768  df-lfl 39051
This theorem is referenced by:  ldualgrplem  39138
  Copyright terms: Public domain W3C validator