Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   GIF version

Theorem lflnegcl 37085
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 37156, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflnegcl (𝜑𝑁𝐹)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem lflnegcl
Dummy variables 𝑦 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lflnegcl.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
32lmodring 20129 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ringgrp 19786 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
76adantr 481 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ Grp)
81adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
9 lflnegcl.g . . . . . 6 (𝜑𝐺𝐹)
109adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
11 simpr 485 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
12 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
13 lflnegcl.v . . . . . 6 𝑉 = (Base‘𝑊)
14 lflnegcl.f . . . . . 6 𝐹 = (LFnl‘𝑊)
152, 12, 13, 14lflcl 37074 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
168, 10, 11, 15syl3anc 1370 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
17 lflnegcl.i . . . . 5 𝐼 = (invg𝑅)
1812, 17grpinvcl 18625 . . . 4 ((𝑅 ∈ Grp ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
197, 16, 18syl2anc 584 . . 3 ((𝜑𝑥𝑉) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
20 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2119, 20fmptd 6985 . 2 (𝜑𝑁:𝑉⟶(Base‘𝑅))
22 ringabl 19817 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
234, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
2423adantr 481 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Abel)
254adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
26 simpr1 1193 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑘 ∈ (Base‘𝑅))
271adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑊 ∈ LMod)
289adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝐺𝐹)
29 simpr2 1194 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
302, 12, 13, 14lflcl 37074 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ (Base‘𝑅))
3127, 28, 29, 30syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑦) ∈ (Base‘𝑅))
32 eqid 2740 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3312, 32ringcl 19798 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
3425, 26, 31, 33syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
35 simpr3 1195 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
362, 12, 13, 14lflcl 37074 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝑅))
3727, 28, 35, 36syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑧) ∈ (Base‘𝑅))
38 eqid 2740 . . . . . . 7 (+g𝑅) = (+g𝑅)
3912, 38, 17ablinvadd 19409 . . . . . 6 ((𝑅 ∈ Abel ∧ (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4024, 34, 37, 39syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
41 eqid 2740 . . . . . . . 8 (+g𝑊) = (+g𝑊)
42 eqid 2740 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4313, 41, 2, 42, 12, 38, 32, 14lfli 37071 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4427, 28, 26, 29, 35, 43syl113anc 1381 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4544fveq2d 6775 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))))
4612, 32, 17, 25, 26, 31ringmneg2 19834 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))) = (𝐼‘(𝑘(.r𝑅)(𝐺𝑦))))
4746oveq1d 7286 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4840, 45, 473eqtr4d 2790 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4913, 2, 42, 12lmodvscl 20138 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5027, 26, 29, 49syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5113, 41lmodvacl 20135 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
5227, 50, 35, 51syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
53 2fveq3 6776 . . . . . 6 (𝑥 = ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
54 fvex 6784 . . . . . 6 (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) ∈ V
5553, 20, 54fvmpt 6872 . . . . 5 (((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
5652, 55syl 17 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
57 2fveq3 6776 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑦)))
58 fvex 6784 . . . . . . . 8 (𝐼‘(𝐺𝑦)) ∈ V
5957, 20, 58fvmpt 6872 . . . . . . 7 (𝑦𝑉 → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6029, 59syl 17 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6160oveq2d 7287 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝑁𝑦)) = (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))))
62 2fveq3 6776 . . . . . . 7 (𝑥 = 𝑧 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑧)))
63 fvex 6784 . . . . . . 7 (𝐼‘(𝐺𝑧)) ∈ V
6462, 20, 63fvmpt 6872 . . . . . 6 (𝑧𝑉 → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6535, 64syl 17 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6661, 65oveq12d 7289 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
6748, 56, 663eqtr4d 2790 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6867ralrimivvva 3118 . 2 (𝜑 → ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6913, 41, 2, 42, 12, 38, 32, 14islfl 37070 . . 3 (𝑊 ∈ LMod → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
701, 69syl 17 . 2 (𝜑 → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
7121, 68, 70mpbir2and 710 1 (𝜑𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1542  wcel 2110  wral 3066  cmpt 5162  wf 6428  cfv 6432  (class class class)co 7271  Basecbs 16910  +gcplusg 16960  .rcmulr 16961  Scalarcsca 16963   ·𝑠 cvsca 16964  Grpcgrp 18575  invgcminusg 18576  Abelcabl 19385  Ringcrg 19781  LModclmod 20121  LFnlclfn 37067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-plusg 16973  df-0g 17150  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-grp 18578  df-minusg 18579  df-cmn 19386  df-abl 19387  df-mgp 19719  df-ur 19736  df-ring 19783  df-lmod 20123  df-lfl 37068
This theorem is referenced by:  ldualgrplem  37155
  Copyright terms: Public domain W3C validator