Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   GIF version

Theorem lflnegcl 37089
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 37160, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflnegcl (𝜑𝑁𝐹)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem lflnegcl
Dummy variables 𝑦 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lflnegcl.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
32lmodring 20131 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ringgrp 19788 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
76adantr 481 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ Grp)
81adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
9 lflnegcl.g . . . . . 6 (𝜑𝐺𝐹)
109adantr 481 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
11 simpr 485 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
12 eqid 2738 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
13 lflnegcl.v . . . . . 6 𝑉 = (Base‘𝑊)
14 lflnegcl.f . . . . . 6 𝐹 = (LFnl‘𝑊)
152, 12, 13, 14lflcl 37078 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
168, 10, 11, 15syl3anc 1370 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
17 lflnegcl.i . . . . 5 𝐼 = (invg𝑅)
1812, 17grpinvcl 18627 . . . 4 ((𝑅 ∈ Grp ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
197, 16, 18syl2anc 584 . . 3 ((𝜑𝑥𝑉) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
20 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2119, 20fmptd 6988 . 2 (𝜑𝑁:𝑉⟶(Base‘𝑅))
22 ringabl 19819 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
234, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
2423adantr 481 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Abel)
254adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
26 simpr1 1193 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑘 ∈ (Base‘𝑅))
271adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑊 ∈ LMod)
289adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝐺𝐹)
29 simpr2 1194 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
302, 12, 13, 14lflcl 37078 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ (Base‘𝑅))
3127, 28, 29, 30syl3anc 1370 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑦) ∈ (Base‘𝑅))
32 eqid 2738 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3312, 32ringcl 19800 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
3425, 26, 31, 33syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
35 simpr3 1195 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
362, 12, 13, 14lflcl 37078 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝑅))
3727, 28, 35, 36syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑧) ∈ (Base‘𝑅))
38 eqid 2738 . . . . . . 7 (+g𝑅) = (+g𝑅)
3912, 38, 17ablinvadd 19411 . . . . . 6 ((𝑅 ∈ Abel ∧ (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4024, 34, 37, 39syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
41 eqid 2738 . . . . . . . 8 (+g𝑊) = (+g𝑊)
42 eqid 2738 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4313, 41, 2, 42, 12, 38, 32, 14lfli 37075 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4427, 28, 26, 29, 35, 43syl113anc 1381 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4544fveq2d 6778 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))))
4612, 32, 17, 25, 26, 31ringmneg2 19836 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))) = (𝐼‘(𝑘(.r𝑅)(𝐺𝑦))))
4746oveq1d 7290 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4840, 45, 473eqtr4d 2788 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4913, 2, 42, 12lmodvscl 20140 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5027, 26, 29, 49syl3anc 1370 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5113, 41lmodvacl 20137 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
5227, 50, 35, 51syl3anc 1370 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
53 2fveq3 6779 . . . . . 6 (𝑥 = ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
54 fvex 6787 . . . . . 6 (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) ∈ V
5553, 20, 54fvmpt 6875 . . . . 5 (((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
5652, 55syl 17 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
57 2fveq3 6779 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑦)))
58 fvex 6787 . . . . . . . 8 (𝐼‘(𝐺𝑦)) ∈ V
5957, 20, 58fvmpt 6875 . . . . . . 7 (𝑦𝑉 → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6029, 59syl 17 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6160oveq2d 7291 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝑁𝑦)) = (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))))
62 2fveq3 6779 . . . . . . 7 (𝑥 = 𝑧 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑧)))
63 fvex 6787 . . . . . . 7 (𝐼‘(𝐺𝑧)) ∈ V
6462, 20, 63fvmpt 6875 . . . . . 6 (𝑧𝑉 → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6535, 64syl 17 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6661, 65oveq12d 7293 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
6748, 56, 663eqtr4d 2788 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6867ralrimivvva 3127 . 2 (𝜑 → ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6913, 41, 2, 42, 12, 38, 32, 14islfl 37074 . . 3 (𝑊 ∈ LMod → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
701, 69syl 17 . 2 (𝜑 → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
7121, 68, 70mpbir2and 710 1 (𝜑𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  invgcminusg 18578  Abelcabl 19387  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  ldualgrplem  37159
  Copyright terms: Public domain W3C validator