Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   GIF version

Theorem lflnegcl 36775
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 36846, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflnegcl (𝜑𝑁𝐹)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem lflnegcl
Dummy variables 𝑦 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lflnegcl.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
32lmodring 19861 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ringgrp 19521 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
76adantr 484 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ Grp)
81adantr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
9 lflnegcl.g . . . . . 6 (𝜑𝐺𝐹)
109adantr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
11 simpr 488 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
12 eqid 2736 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
13 lflnegcl.v . . . . . 6 𝑉 = (Base‘𝑊)
14 lflnegcl.f . . . . . 6 𝐹 = (LFnl‘𝑊)
152, 12, 13, 14lflcl 36764 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
168, 10, 11, 15syl3anc 1373 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
17 lflnegcl.i . . . . 5 𝐼 = (invg𝑅)
1812, 17grpinvcl 18369 . . . 4 ((𝑅 ∈ Grp ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
197, 16, 18syl2anc 587 . . 3 ((𝜑𝑥𝑉) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
20 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2119, 20fmptd 6909 . 2 (𝜑𝑁:𝑉⟶(Base‘𝑅))
22 ringabl 19552 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
234, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
2423adantr 484 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Abel)
254adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
26 simpr1 1196 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑘 ∈ (Base‘𝑅))
271adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑊 ∈ LMod)
289adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝐺𝐹)
29 simpr2 1197 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
302, 12, 13, 14lflcl 36764 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ (Base‘𝑅))
3127, 28, 29, 30syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑦) ∈ (Base‘𝑅))
32 eqid 2736 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3312, 32ringcl 19533 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
3425, 26, 31, 33syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
35 simpr3 1198 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
362, 12, 13, 14lflcl 36764 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝑅))
3727, 28, 35, 36syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑧) ∈ (Base‘𝑅))
38 eqid 2736 . . . . . . 7 (+g𝑅) = (+g𝑅)
3912, 38, 17ablinvadd 19149 . . . . . 6 ((𝑅 ∈ Abel ∧ (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4024, 34, 37, 39syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
41 eqid 2736 . . . . . . . 8 (+g𝑊) = (+g𝑊)
42 eqid 2736 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4313, 41, 2, 42, 12, 38, 32, 14lfli 36761 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4427, 28, 26, 29, 35, 43syl113anc 1384 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4544fveq2d 6699 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))))
4612, 32, 17, 25, 26, 31ringmneg2 19569 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))) = (𝐼‘(𝑘(.r𝑅)(𝐺𝑦))))
4746oveq1d 7206 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4840, 45, 473eqtr4d 2781 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4913, 2, 42, 12lmodvscl 19870 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5027, 26, 29, 49syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5113, 41lmodvacl 19867 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
5227, 50, 35, 51syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
53 2fveq3 6700 . . . . . 6 (𝑥 = ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
54 fvex 6708 . . . . . 6 (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) ∈ V
5553, 20, 54fvmpt 6796 . . . . 5 (((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
5652, 55syl 17 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
57 2fveq3 6700 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑦)))
58 fvex 6708 . . . . . . . 8 (𝐼‘(𝐺𝑦)) ∈ V
5957, 20, 58fvmpt 6796 . . . . . . 7 (𝑦𝑉 → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6029, 59syl 17 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6160oveq2d 7207 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝑁𝑦)) = (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))))
62 2fveq3 6700 . . . . . . 7 (𝑥 = 𝑧 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑧)))
63 fvex 6708 . . . . . . 7 (𝐼‘(𝐺𝑧)) ∈ V
6462, 20, 63fvmpt 6796 . . . . . 6 (𝑧𝑉 → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6535, 64syl 17 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6661, 65oveq12d 7209 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
6748, 56, 663eqtr4d 2781 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6867ralrimivvva 3103 . 2 (𝜑 → ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6913, 41, 2, 42, 12, 38, 32, 14islfl 36760 . . 3 (𝑊 ∈ LMod → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
701, 69syl 17 . 2 (𝜑 → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
7121, 68, 70mpbir2and 713 1 (𝜑𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  cmpt 5120  wf 6354  cfv 6358  (class class class)co 7191  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752   ·𝑠 cvsca 16753  Grpcgrp 18319  invgcminusg 18320  Abelcabl 19125  Ringcrg 19516  LModclmod 19853  LFnlclfn 36757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-minusg 18323  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-lmod 19855  df-lfl 36758
This theorem is referenced by:  ldualgrplem  36845
  Copyright terms: Public domain W3C validator