Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Visualization version   GIF version

Theorem lflnegcl 39061
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 39132, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v 𝑉 = (Base‘𝑊)
lflnegcl.r 𝑅 = (Scalar‘𝑊)
lflnegcl.i 𝐼 = (invg𝑅)
lflnegcl.n 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
lflnegcl.f 𝐹 = (LFnl‘𝑊)
lflnegcl.w (𝜑𝑊 ∈ LMod)
lflnegcl.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lflnegcl (𝜑𝑁𝐹)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊   𝜑,𝑥
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem lflnegcl
Dummy variables 𝑦 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7 (𝜑𝑊 ∈ LMod)
2 lflnegcl.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
32lmodring 20806 . . . . . . 7 (𝑊 ∈ LMod → 𝑅 ∈ Ring)
41, 3syl 17 . . . . . 6 (𝜑𝑅 ∈ Ring)
5 ringgrp 20158 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
64, 5syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
76adantr 480 . . . 4 ((𝜑𝑥𝑉) → 𝑅 ∈ Grp)
81adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝑊 ∈ LMod)
9 lflnegcl.g . . . . . 6 (𝜑𝐺𝐹)
109adantr 480 . . . . 5 ((𝜑𝑥𝑉) → 𝐺𝐹)
11 simpr 484 . . . . 5 ((𝜑𝑥𝑉) → 𝑥𝑉)
12 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
13 lflnegcl.v . . . . . 6 𝑉 = (Base‘𝑊)
14 lflnegcl.f . . . . . 6 𝐹 = (LFnl‘𝑊)
152, 12, 13, 14lflcl 39050 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
168, 10, 11, 15syl3anc 1373 . . . 4 ((𝜑𝑥𝑉) → (𝐺𝑥) ∈ (Base‘𝑅))
17 lflnegcl.i . . . . 5 𝐼 = (invg𝑅)
1812, 17grpinvcl 18901 . . . 4 ((𝑅 ∈ Grp ∧ (𝐺𝑥) ∈ (Base‘𝑅)) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
197, 16, 18syl2anc 584 . . 3 ((𝜑𝑥𝑉) → (𝐼‘(𝐺𝑥)) ∈ (Base‘𝑅))
20 lflnegcl.n . . 3 𝑁 = (𝑥𝑉 ↦ (𝐼‘(𝐺𝑥)))
2119, 20fmptd 7068 . 2 (𝜑𝑁:𝑉⟶(Base‘𝑅))
22 ringabl 20201 . . . . . . . 8 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
234, 22syl 17 . . . . . . 7 (𝜑𝑅 ∈ Abel)
2423adantr 480 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Abel)
254adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Ring)
26 simpr1 1195 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑘 ∈ (Base‘𝑅))
271adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑊 ∈ LMod)
289adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝐺𝐹)
29 simpr2 1196 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑦𝑉)
302, 12, 13, 14lflcl 39050 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑦𝑉) → (𝐺𝑦) ∈ (Base‘𝑅))
3127, 28, 29, 30syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑦) ∈ (Base‘𝑅))
32 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
3312, 32ringcl 20170 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑘 ∈ (Base‘𝑅) ∧ (𝐺𝑦) ∈ (Base‘𝑅)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
3425, 26, 31, 33syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅))
35 simpr3 1197 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
362, 12, 13, 14lflcl 39050 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑧𝑉) → (𝐺𝑧) ∈ (Base‘𝑅))
3727, 28, 35, 36syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺𝑧) ∈ (Base‘𝑅))
38 eqid 2729 . . . . . . 7 (+g𝑅) = (+g𝑅)
3912, 38, 17ablinvadd 19721 . . . . . 6 ((𝑅 ∈ Abel ∧ (𝑘(.r𝑅)(𝐺𝑦)) ∈ (Base‘𝑅) ∧ (𝐺𝑧) ∈ (Base‘𝑅)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4024, 34, 37, 39syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
41 eqid 2729 . . . . . . . 8 (+g𝑊) = (+g𝑊)
42 eqid 2729 . . . . . . . 8 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4313, 41, 2, 42, 12, 38, 32, 14lfli 39047 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4427, 28, 26, 29, 35, 43syl113anc 1384 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧)))
4544fveq2d 6844 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = (𝐼‘((𝑘(.r𝑅)(𝐺𝑦))(+g𝑅)(𝐺𝑧))))
4612, 32, 17, 25, 26, 31ringmneg2 20225 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))) = (𝐼‘(𝑘(.r𝑅)(𝐺𝑦))))
4746oveq1d 7384 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))) = ((𝐼‘(𝑘(.r𝑅)(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4840, 45, 473eqtr4d 2774 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
4913, 2, 42, 12lmodvscl 20816 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5027, 26, 29, 49syl3anc 1373 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉)
5113, 41lmodvacl 20813 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑦) ∈ 𝑉𝑧𝑉) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
5227, 50, 35, 51syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉)
53 2fveq3 6845 . . . . . 6 (𝑥 = ((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
54 fvex 6853 . . . . . 6 (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))) ∈ V
5553, 20, 54fvmpt 6950 . . . . 5 (((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧) ∈ 𝑉 → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
5652, 55syl 17 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = (𝐼‘(𝐺‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧))))
57 2fveq3 6845 . . . . . . . 8 (𝑥 = 𝑦 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑦)))
58 fvex 6853 . . . . . . . 8 (𝐼‘(𝐺𝑦)) ∈ V
5957, 20, 58fvmpt 6950 . . . . . . 7 (𝑦𝑉 → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6029, 59syl 17 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑦) = (𝐼‘(𝐺𝑦)))
6160oveq2d 7385 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑘(.r𝑅)(𝑁𝑦)) = (𝑘(.r𝑅)(𝐼‘(𝐺𝑦))))
62 2fveq3 6845 . . . . . . 7 (𝑥 = 𝑧 → (𝐼‘(𝐺𝑥)) = (𝐼‘(𝐺𝑧)))
63 fvex 6853 . . . . . . 7 (𝐼‘(𝐺𝑧)) ∈ V
6462, 20, 63fvmpt 6950 . . . . . 6 (𝑧𝑉 → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6535, 64syl 17 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁𝑧) = (𝐼‘(𝐺𝑧)))
6661, 65oveq12d 7387 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)) = ((𝑘(.r𝑅)(𝐼‘(𝐺𝑦)))(+g𝑅)(𝐼‘(𝐺𝑧))))
6748, 56, 663eqtr4d 2774 . . 3 ((𝜑 ∧ (𝑘 ∈ (Base‘𝑅) ∧ 𝑦𝑉𝑧𝑉)) → (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6867ralrimivvva 3181 . 2 (𝜑 → ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))
6913, 41, 2, 42, 12, 38, 32, 14islfl 39046 . . 3 (𝑊 ∈ LMod → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
701, 69syl 17 . 2 (𝜑 → (𝑁𝐹 ↔ (𝑁:𝑉⟶(Base‘𝑅) ∧ ∀𝑘 ∈ (Base‘𝑅)∀𝑦𝑉𝑧𝑉 (𝑁‘((𝑘( ·𝑠𝑊)𝑦)(+g𝑊)𝑧)) = ((𝑘(.r𝑅)(𝑁𝑦))(+g𝑅)(𝑁𝑧)))))
7121, 68, 70mpbir2and 713 1 (𝜑𝑁𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cmpt 5183  wf 6495  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Scalarcsca 17199   ·𝑠 cvsca 17200  Grpcgrp 18847  invgcminusg 18848  Abelcabl 19695  Ringcrg 20153  LModclmod 20798  LFnlclfn 39043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-grp 18850  df-minusg 18851  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-lmod 20800  df-lfl 39044
This theorem is referenced by:  ldualgrplem  39131
  Copyright terms: Public domain W3C validator