Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrcl Structured version   Visualization version   GIF version

Theorem lshpkrcl 39115
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lshpkrcl (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkrcl
Dummy variables 𝑎 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkr.a . . . . 5 + = (+g𝑊)
3 lshpkr.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkr.p . . . . 5 = (LSSum‘𝑊)
5 lshpkr.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
76adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑊 ∈ LVec)
8 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
98adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑈𝐻)
10 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
1110adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑍𝑉)
12 simpr 484 . . . . 5 ((𝜑𝑎𝑉) → 𝑎𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑎𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkr.d . . . . 5 𝐷 = (Scalar‘𝑊)
16 lshpkr.k . . . . 5 𝐾 = (Base‘𝐷)
17 lshpkr.t . . . . 5 · = ( ·𝑠𝑊)
181, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17lshpsmreu 39108 . . . 4 ((𝜑𝑎𝑉) → ∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))
19 riotacl 7323 . . . 4 (∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2018, 19syl 17 . . 3 ((𝜑𝑎𝑉) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
21 lshpkr.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
22 eqeq1 2733 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2322rexbidv 3153 . . . . . 6 (𝑥 = 𝑎 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2423riotabidv 7308 . . . . 5 (𝑥 = 𝑎 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2524cbvmptv 5196 . . . 4 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2621, 25eqtri 2752 . . 3 𝐺 = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2720, 26fmptd 7048 . 2 (𝜑𝐺:𝑉𝐾)
28 eqid 2729 . . . 4 (0g𝐷) = (0g𝐷)
291, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21lshpkrlem6 39114 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
3029ralrimivvva 3175 . 2 (𝜑 → ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
31 eqid 2729 . . . 4 (+g𝐷) = (+g𝐷)
32 eqid 2729 . . . 4 (.r𝐷) = (.r𝐷)
33 lshpkr.f . . . 4 𝐹 = (LFnl‘𝑊)
341, 2, 15, 17, 16, 31, 32, 33islfl 39059 . . 3 (𝑊 ∈ LVec → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
356, 34syl 17 . 2 (𝜑 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
3627, 30, 35mpbir2and 713 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  ∃!wreu 3341  {csn 4577  cmpt 5173  wf 6478  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSSumclsm 19513  LSpanclspn 20874  LVecclvec 21006  LSHypclsh 38974  LFnlclfn 39056
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-subg 19002  df-cntz 19196  df-lsm 19515  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-drng 20616  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lvec 21007  df-lshyp 38976  df-lfl 39057
This theorem is referenced by:  lshpkr  39116  lshpkrex  39117  dochflcl  41474
  Copyright terms: Public domain W3C validator