Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrcl Structured version   Visualization version   GIF version

Theorem lshpkrcl 39118
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lshpkrcl (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkrcl
Dummy variables 𝑎 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkr.a . . . . 5 + = (+g𝑊)
3 lshpkr.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkr.p . . . . 5 = (LSSum‘𝑊)
5 lshpkr.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
76adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑊 ∈ LVec)
8 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
98adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑈𝐻)
10 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
1110adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑍𝑉)
12 simpr 484 . . . . 5 ((𝜑𝑎𝑉) → 𝑎𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑎𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkr.d . . . . 5 𝐷 = (Scalar‘𝑊)
16 lshpkr.k . . . . 5 𝐾 = (Base‘𝐷)
17 lshpkr.t . . . . 5 · = ( ·𝑠𝑊)
181, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17lshpsmreu 39111 . . . 4 ((𝜑𝑎𝑉) → ∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))
19 riotacl 7406 . . . 4 (∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2018, 19syl 17 . . 3 ((𝜑𝑎𝑉) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
21 lshpkr.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
22 eqeq1 2740 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2322rexbidv 3178 . . . . . 6 (𝑥 = 𝑎 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2423riotabidv 7391 . . . . 5 (𝑥 = 𝑎 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2524cbvmptv 5254 . . . 4 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2621, 25eqtri 2764 . . 3 𝐺 = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2720, 26fmptd 7133 . 2 (𝜑𝐺:𝑉𝐾)
28 eqid 2736 . . . 4 (0g𝐷) = (0g𝐷)
291, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21lshpkrlem6 39117 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
3029ralrimivvva 3204 . 2 (𝜑 → ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
31 eqid 2736 . . . 4 (+g𝐷) = (+g𝐷)
32 eqid 2736 . . . 4 (.r𝐷) = (.r𝐷)
33 lshpkr.f . . . 4 𝐹 = (LFnl‘𝑊)
341, 2, 15, 17, 16, 31, 32, 33islfl 39062 . . 3 (𝑊 ∈ LVec → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
356, 34syl 17 . 2 (𝜑 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
3627, 30, 35mpbir2and 713 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  ∃!wreu 3377  {csn 4625  cmpt 5224  wf 6556  cfv 6560  crio 7388  (class class class)co 7432  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17485  LSSumclsm 19653  LSpanclspn 20970  LVecclvec 21102  LSHypclsh 38977  LFnlclfn 39059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-0g 17487  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lshyp 38979  df-lfl 39060
This theorem is referenced by:  lshpkr  39119  lshpkrex  39120  dochflcl  41478
  Copyright terms: Public domain W3C validator