Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrcl Structured version   Visualization version   GIF version

Theorem lshpkrcl 39214
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.)
Hypotheses
Ref Expression
lshpkr.v 𝑉 = (Base‘𝑊)
lshpkr.a + = (+g𝑊)
lshpkr.n 𝑁 = (LSpan‘𝑊)
lshpkr.p = (LSSum‘𝑊)
lshpkr.h 𝐻 = (LSHyp‘𝑊)
lshpkr.w (𝜑𝑊 ∈ LVec)
lshpkr.u (𝜑𝑈𝐻)
lshpkr.z (𝜑𝑍𝑉)
lshpkr.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkr.d 𝐷 = (Scalar‘𝑊)
lshpkr.k 𝐾 = (Base‘𝐷)
lshpkr.t · = ( ·𝑠𝑊)
lshpkr.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
lshpkr.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lshpkrcl (𝜑𝐺𝐹)
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   𝑈,𝑘,𝑥,𝑦   𝐷,𝑘   · ,𝑘,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑘)   𝐷(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝐺(𝑥,𝑦,𝑘)   𝐻(𝑥,𝑦,𝑘)   𝐾(𝑦)   𝑁(𝑥,𝑦,𝑘)   𝑉(𝑦,𝑘)   𝑊(𝑥,𝑦,𝑘)

Proof of Theorem lshpkrcl
Dummy variables 𝑎 𝑙 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lshpkr.v . . . . 5 𝑉 = (Base‘𝑊)
2 lshpkr.a . . . . 5 + = (+g𝑊)
3 lshpkr.n . . . . 5 𝑁 = (LSpan‘𝑊)
4 lshpkr.p . . . . 5 = (LSSum‘𝑊)
5 lshpkr.h . . . . 5 𝐻 = (LSHyp‘𝑊)
6 lshpkr.w . . . . . 6 (𝜑𝑊 ∈ LVec)
76adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑊 ∈ LVec)
8 lshpkr.u . . . . . 6 (𝜑𝑈𝐻)
98adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑈𝐻)
10 lshpkr.z . . . . . 6 (𝜑𝑍𝑉)
1110adantr 480 . . . . 5 ((𝜑𝑎𝑉) → 𝑍𝑉)
12 simpr 484 . . . . 5 ((𝜑𝑎𝑉) → 𝑎𝑉)
13 lshpkr.e . . . . . 6 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
1413adantr 480 . . . . 5 ((𝜑𝑎𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
15 lshpkr.d . . . . 5 𝐷 = (Scalar‘𝑊)
16 lshpkr.k . . . . 5 𝐾 = (Base‘𝐷)
17 lshpkr.t . . . . 5 · = ( ·𝑠𝑊)
181, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17lshpsmreu 39207 . . . 4 ((𝜑𝑎𝑉) → ∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))
19 riotacl 7320 . . . 4 (∃!𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
2018, 19syl 17 . . 3 ((𝜑𝑎𝑉) → (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾)
21 lshpkr.g . . . 4 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
22 eqeq1 2735 . . . . . . 7 (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2322rexbidv 3156 . . . . . 6 (𝑥 = 𝑎 → (∃𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2423riotabidv 7305 . . . . 5 (𝑥 = 𝑎 → (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2524cbvmptv 5193 . . . 4 (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2621, 25eqtri 2754 . . 3 𝐺 = (𝑎𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))))
2720, 26fmptd 7047 . 2 (𝜑𝐺:𝑉𝐾)
28 eqid 2731 . . . 4 (0g𝐷) = (0g𝐷)
291, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21lshpkrlem6 39213 . . 3 ((𝜑 ∧ (𝑙𝐾𝑢𝑉𝑣𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
3029ralrimivvva 3178 . 2 (𝜑 → ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))
31 eqid 2731 . . . 4 (+g𝐷) = (+g𝐷)
32 eqid 2731 . . . 4 (.r𝐷) = (.r𝐷)
33 lshpkr.f . . . 4 𝐹 = (LFnl‘𝑊)
341, 2, 15, 17, 16, 31, 32, 33islfl 39158 . . 3 (𝑊 ∈ LVec → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
356, 34syl 17 . 2 (𝜑 → (𝐺𝐹 ↔ (𝐺:𝑉𝐾 ∧ ∀𝑙𝐾𝑢𝑉𝑣𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)))))
3627, 30, 35mpbir2and 713 1 (𝜑𝐺𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  ∃!wreu 3344  {csn 4573  cmpt 5170  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  LSSumclsm 19546  LSpanclspn 20904  LVecclvec 21036  LSHypclsh 39073  LFnlclfn 39155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-cntz 19229  df-lsm 19548  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-invr 20306  df-drng 20646  df-lmod 20795  df-lss 20865  df-lsp 20905  df-lvec 21037  df-lshyp 39075  df-lfl 39156
This theorem is referenced by:  lshpkr  39215  lshpkrex  39216  dochflcl  41573
  Copyright terms: Public domain W3C validator