![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrcl | Structured version Visualization version GIF version |
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkr.a | ⊢ + = (+g‘𝑊) |
lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
lshpkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lshpkrcl | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpkr.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
3 | lshpkr.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lshpkr.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | lshpkr.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑊 ∈ LVec) |
8 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
10 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
11 | 10 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
12 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
14 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
15 | lshpkr.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
16 | lshpkr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
17 | lshpkr.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
18 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17 | lshpsmreu 37571 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) |
19 | riotacl 7331 | . . . 4 ⊢ (∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) |
21 | lshpkr.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
22 | eqeq1 2740 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍)))) | |
23 | 22 | rexbidv 3175 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
24 | 23 | riotabidv 7315 | . . . . 5 ⊢ (𝑥 = 𝑎 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
25 | 24 | cbvmptv 5218 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
26 | 21, 25 | eqtri 2764 | . . 3 ⊢ 𝐺 = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
27 | 20, 26 | fmptd 7062 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
28 | eqid 2736 | . . . 4 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
29 | 1, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21 | lshpkrlem6 37577 | . . 3 ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
30 | 29 | ralrimivvva 3200 | . 2 ⊢ (𝜑 → ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
31 | eqid 2736 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
32 | eqid 2736 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
33 | lshpkr.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
34 | 1, 2, 15, 17, 16, 31, 32, 33 | islfl 37522 | . . 3 ⊢ (𝑊 ∈ LVec → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
35 | 6, 34 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
36 | 27, 30, 35 | mpbir2and 711 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∃wrex 3073 ∃!wreu 3351 {csn 4586 ↦ cmpt 5188 ⟶wf 6492 ‘cfv 6496 ℩crio 7312 (class class class)co 7357 Basecbs 17083 +gcplusg 17133 .rcmulr 17134 Scalarcsca 17136 ·𝑠 cvsca 17137 0gc0g 17321 LSSumclsm 19416 LSpanclspn 20432 LVecclvec 20563 LSHypclsh 37437 LFnlclfn 37519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-tpos 8157 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-0g 17323 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-subg 18925 df-cntz 19097 df-lsm 19418 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-oppr 20049 df-dvdsr 20070 df-unit 20071 df-invr 20101 df-drng 20187 df-lmod 20324 df-lss 20393 df-lsp 20433 df-lvec 20564 df-lshyp 37439 df-lfl 37520 |
This theorem is referenced by: lshpkr 37579 lshpkrex 37580 dochflcl 39938 |
Copyright terms: Public domain | W3C validator |