![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lshpkrcl | Structured version Visualization version GIF version |
Description: The set 𝐺 defined by hyperplane 𝑈 is a linear functional. (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lshpkr.v | ⊢ 𝑉 = (Base‘𝑊) |
lshpkr.a | ⊢ + = (+g‘𝑊) |
lshpkr.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lshpkr.p | ⊢ ⊕ = (LSSum‘𝑊) |
lshpkr.h | ⊢ 𝐻 = (LSHyp‘𝑊) |
lshpkr.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lshpkr.u | ⊢ (𝜑 → 𝑈 ∈ 𝐻) |
lshpkr.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
lshpkr.e | ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
lshpkr.d | ⊢ 𝐷 = (Scalar‘𝑊) |
lshpkr.k | ⊢ 𝐾 = (Base‘𝐷) |
lshpkr.t | ⊢ · = ( ·𝑠 ‘𝑊) |
lshpkr.g | ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) |
lshpkr.f | ⊢ 𝐹 = (LFnl‘𝑊) |
Ref | Expression |
---|---|
lshpkrcl | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpkr.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lshpkr.a | . . . . 5 ⊢ + = (+g‘𝑊) | |
3 | lshpkr.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
4 | lshpkr.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝑊) | |
5 | lshpkr.h | . . . . 5 ⊢ 𝐻 = (LSHyp‘𝑊) | |
6 | lshpkr.w | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑊 ∈ LVec) |
8 | lshpkr.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ 𝐻) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑈 ∈ 𝐻) |
10 | lshpkr.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
11 | 10 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑍 ∈ 𝑉) |
12 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → 𝑎 ∈ 𝑉) | |
13 | lshpkr.e | . . . . . 6 ⊢ (𝜑 → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) | |
14 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (𝑈 ⊕ (𝑁‘{𝑍})) = 𝑉) |
15 | lshpkr.d | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
16 | lshpkr.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐷) | |
17 | lshpkr.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
18 | 1, 2, 3, 4, 5, 7, 9, 11, 12, 14, 15, 16, 17 | lshpsmreu 39065 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → ∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) |
19 | riotacl 7422 | . . . 4 ⊢ (∃!𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) | |
20 | 18, 19 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑉) → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍))) ∈ 𝐾) |
21 | lshpkr.g | . . . 4 ⊢ 𝐺 = (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) | |
22 | eqeq1 2744 | . . . . . . 7 ⊢ (𝑥 = 𝑎 → (𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ 𝑎 = (𝑦 + (𝑘 · 𝑍)))) | |
23 | 22 | rexbidv 3185 | . . . . . 6 ⊢ (𝑥 = 𝑎 → (∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)) ↔ ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
24 | 23 | riotabidv 7406 | . . . . 5 ⊢ (𝑥 = 𝑎 → (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))) = (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
25 | 24 | cbvmptv 5279 | . . . 4 ⊢ (𝑥 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍)))) = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
26 | 21, 25 | eqtri 2768 | . . 3 ⊢ 𝐺 = (𝑎 ∈ 𝑉 ↦ (℩𝑘 ∈ 𝐾 ∃𝑦 ∈ 𝑈 𝑎 = (𝑦 + (𝑘 · 𝑍)))) |
27 | 20, 26 | fmptd 7148 | . 2 ⊢ (𝜑 → 𝐺:𝑉⟶𝐾) |
28 | eqid 2740 | . . . 4 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
29 | 1, 2, 3, 4, 5, 6, 8, 10, 10, 13, 15, 16, 17, 28, 21 | lshpkrlem6 39071 | . . 3 ⊢ ((𝜑 ∧ (𝑙 ∈ 𝐾 ∧ 𝑢 ∈ 𝑉 ∧ 𝑣 ∈ 𝑉)) → (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
30 | 29 | ralrimivvva 3211 | . 2 ⊢ (𝜑 → ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))) |
31 | eqid 2740 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
32 | eqid 2740 | . . . 4 ⊢ (.r‘𝐷) = (.r‘𝐷) | |
33 | lshpkr.f | . . . 4 ⊢ 𝐹 = (LFnl‘𝑊) | |
34 | 1, 2, 15, 17, 16, 31, 32, 33 | islfl 39016 | . . 3 ⊢ (𝑊 ∈ LVec → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
35 | 6, 34 | syl 17 | . 2 ⊢ (𝜑 → (𝐺 ∈ 𝐹 ↔ (𝐺:𝑉⟶𝐾 ∧ ∀𝑙 ∈ 𝐾 ∀𝑢 ∈ 𝑉 ∀𝑣 ∈ 𝑉 (𝐺‘((𝑙 · 𝑢) + 𝑣)) = ((𝑙(.r‘𝐷)(𝐺‘𝑢))(+g‘𝐷)(𝐺‘𝑣))))) |
36 | 27, 30, 35 | mpbir2and 712 | 1 ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∃!wreu 3386 {csn 4648 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 Scalarcsca 17314 ·𝑠 cvsca 17315 0gc0g 17499 LSSumclsm 19676 LSpanclspn 20992 LVecclvec 21124 LSHypclsh 38931 LFnlclfn 39013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lshyp 38933 df-lfl 39014 |
This theorem is referenced by: lshpkr 39073 lshpkrex 39074 dochflcl 41432 |
Copyright terms: Public domain | W3C validator |