Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnghm2d Structured version   Visualization version   GIF version

Theorem isrnghm2d 45459
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
isrnghmd.b 𝐵 = (Base‘𝑅)
isrnghmd.t · = (.r𝑅)
isrnghmd.u × = (.r𝑆)
isrnghmd.r (𝜑𝑅 ∈ Rng)
isrnghmd.s (𝜑𝑆 ∈ Rng)
isrnghmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrnghm2d.f (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
Assertion
Ref Expression
isrnghm2d (𝜑𝐹 ∈ (𝑅 RngHomo 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem isrnghm2d
StepHypRef Expression
1 isrnghmd.r . . 3 (𝜑𝑅 ∈ Rng)
2 isrnghmd.s . . 3 (𝜑𝑆 ∈ Rng)
31, 2jca 512 . 2 (𝜑 → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
4 isrnghm2d.f . . 3 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
5 isrnghmd.ht . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
65ralrimivva 3123 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
74, 6jca 512 . 2 (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦))))
8 isrnghmd.b . . 3 𝐵 = (Base‘𝑅)
9 isrnghmd.t . . 3 · = (.r𝑅)
10 isrnghmd.u . . 3 × = (.r𝑆)
118, 9, 10isrnghm 45450 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))))
123, 7, 11sylanbrc 583 1 (𝜑𝐹 ∈ (𝑅 RngHomo 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  Basecbs 16912  .rcmulr 16963   GrpHom cghm 18831  Rngcrng 45432   RngHomo crngh 45443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-ghm 18832  df-abl 19389  df-rng0 45433  df-rnghomo 45445
This theorem is referenced by:  isrnghmd  45460
  Copyright terms: Public domain W3C validator