Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrnghm2d Structured version   Visualization version   GIF version

Theorem isrnghm2d 45347
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
isrnghmd.b 𝐵 = (Base‘𝑅)
isrnghmd.t · = (.r𝑅)
isrnghmd.u × = (.r𝑆)
isrnghmd.r (𝜑𝑅 ∈ Rng)
isrnghmd.s (𝜑𝑆 ∈ Rng)
isrnghmd.ht ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
isrnghm2d.f (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
Assertion
Ref Expression
isrnghm2d (𝜑𝐹 ∈ (𝑅 RngHomo 𝑆))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   · (𝑥,𝑦)   × (𝑥,𝑦)

Proof of Theorem isrnghm2d
StepHypRef Expression
1 isrnghmd.r . . 3 (𝜑𝑅 ∈ Rng)
2 isrnghmd.s . . 3 (𝜑𝑆 ∈ Rng)
31, 2jca 511 . 2 (𝜑 → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng))
4 isrnghm2d.f . . 3 (𝜑𝐹 ∈ (𝑅 GrpHom 𝑆))
5 isrnghmd.ht . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
65ralrimivva 3114 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))
74, 6jca 511 . 2 (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦))))
8 isrnghmd.b . . 3 𝐵 = (Base‘𝑅)
9 isrnghmd.t . . 3 · = (.r𝑅)
10 isrnghmd.u . . 3 × = (.r𝑆)
118, 9, 10isrnghm 45338 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))))
123, 7, 11sylanbrc 582 1 (𝜑𝐹 ∈ (𝑅 RngHomo 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889   GrpHom cghm 18746  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ghm 18747  df-abl 19304  df-rng0 45321  df-rnghomo 45333
This theorem is referenced by:  isrnghmd  45348
  Copyright terms: Public domain W3C validator