Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrnghm2d | Structured version Visualization version GIF version |
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
isrnghmd.b | ⊢ 𝐵 = (Base‘𝑅) |
isrnghmd.t | ⊢ · = (.r‘𝑅) |
isrnghmd.u | ⊢ × = (.r‘𝑆) |
isrnghmd.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
isrnghmd.s | ⊢ (𝜑 → 𝑆 ∈ Rng) |
isrnghmd.ht | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
isrnghm2d.f | ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |
Ref | Expression |
---|---|
isrnghm2d | ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isrnghmd.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
2 | isrnghmd.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ Rng) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝑅 ∈ Rng ∧ 𝑆 ∈ Rng)) |
4 | isrnghm2d.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | |
5 | isrnghmd.ht | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) | |
6 | 5 | ralrimivva 3193 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) |
7 | 4, 6 | jca 512 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)))) |
8 | isrnghmd.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
9 | isrnghmd.t | . . 3 ⊢ · = (.r‘𝑅) | |
10 | isrnghmd.u | . . 3 ⊢ × = (.r‘𝑆) | |
11 | 8, 9, 10 | isrnghm 45720 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))))) |
12 | 3, 7, 11 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑅 RngHomo 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ‘cfv 6465 (class class class)co 7316 Basecbs 16986 .rcmulr 17037 GrpHom cghm 18904 Rngcrng 45702 RngHomo crngh 45713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-map 8666 df-ghm 18905 df-abl 19461 df-rng0 45703 df-rnghomo 45715 |
This theorem is referenced by: isrnghmd 45730 |
Copyright terms: Public domain | W3C validator |