Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rnghmmul | Structured version Visualization version GIF version |
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
rnghmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
rnghmmul.m | ⊢ · = (.r‘𝑅) |
rnghmmul.n | ⊢ × = (.r‘𝑆) |
Ref | Expression |
---|---|
rnghmmul | ⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
2 | rnghmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | rnghmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 45338 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))))) |
5 | fvoveq1 7278 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦))) | |
6 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
7 | 6 | oveq1d 7270 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦))) |
8 | 5, 7 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)))) |
9 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
10 | 9 | fveq2d 6760 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵))) |
11 | fveq2 6756 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
12 | 11 | oveq2d 7271 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
13 | 10, 12 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
14 | 8, 13 | rspc2va 3563 | . . . . 5 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
15 | 14 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
16 | 15 | ad2antll 725 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)))) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
17 | 4, 16 | sylbi 216 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHomo 𝑆) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
18 | 17 | 3impib 1114 | 1 ⊢ ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 .rcmulr 16889 GrpHom cghm 18746 Rngcrng 45320 RngHomo crngh 45331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-ghm 18747 df-abl 19304 df-rng0 45321 df-rnghomo 45333 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |