![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnghmmul | Structured version Visualization version GIF version |
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
rnghmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
rnghmmul.m | ⊢ · = (.r‘𝑅) |
rnghmmul.n | ⊢ × = (.r‘𝑆) |
Ref | Expression |
---|---|
rnghmmul | ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
2 | rnghmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | rnghmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 20458 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))))) |
5 | fvoveq1 7454 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦))) | |
6 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
7 | 6 | oveq1d 7446 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦))) |
8 | 5, 7 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)))) |
9 | oveq2 7439 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
10 | 9 | fveq2d 6911 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵))) |
11 | fveq2 6907 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
12 | 11 | oveq2d 7447 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
13 | 10, 12 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
14 | 8, 13 | rspc2va 3634 | . . . . 5 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
15 | 14 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
16 | 15 | ad2antll 729 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)))) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
17 | 4, 16 | sylbi 217 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
18 | 17 | 3impib 1115 | 1 ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 .rcmulr 17299 GrpHom cghm 19243 Rngcrng 20170 RngHom crnghm 20451 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-map 8867 df-ghm 19244 df-abl 19816 df-rng 20171 df-rnghm 20453 |
This theorem is referenced by: rngisom1 20483 |
Copyright terms: Public domain | W3C validator |