![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rnghmmul | Structured version Visualization version GIF version |
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
Ref | Expression |
---|---|
rnghmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
rnghmmul.m | ⊢ · = (.r‘𝑅) |
rnghmmul.n | ⊢ × = (.r‘𝑆) |
Ref | Expression |
---|---|
rnghmmul | ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnghmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
2 | rnghmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
3 | rnghmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
4 | 1, 2, 3 | isrnghm 20467 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))))) |
5 | fvoveq1 7471 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦))) | |
6 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
7 | 6 | oveq1d 7463 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦))) |
8 | 5, 7 | eqeq12d 2756 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)))) |
9 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
10 | 9 | fveq2d 6924 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵))) |
11 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
12 | 11 | oveq2d 7464 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
13 | 10, 12 | eqeq12d 2756 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
14 | 8, 13 | rspc2va 3647 | . . . . 5 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
15 | 14 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
16 | 15 | ad2antll 728 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)))) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
17 | 4, 16 | sylbi 217 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
18 | 17 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 GrpHom cghm 19252 Rngcrng 20179 RngHom crnghm 20460 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-map 8886 df-ghm 19253 df-abl 19825 df-rng 20180 df-rnghm 20462 |
This theorem is referenced by: rngisom1 20492 |
Copyright terms: Public domain | W3C validator |