Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rnghmmul Structured version   Visualization version   GIF version

Theorem rnghmmul 45346
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
rnghmmul.x 𝑋 = (Base‘𝑅)
rnghmmul.m · = (.r𝑅)
rnghmmul.n × = (.r𝑆)
Assertion
Ref Expression
rnghmmul ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))

Proof of Theorem rnghmmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghmmul.x . . . 4 𝑋 = (Base‘𝑅)
2 rnghmmul.m . . . 4 · = (.r𝑅)
3 rnghmmul.n . . . 4 × = (.r𝑆)
41, 2, 3isrnghm 45338 . . 3 (𝐹 ∈ (𝑅 RngHomo 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))))
5 fvoveq1 7278 . . . . . . 7 (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦)))
6 fveq2 6756 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7270 . . . . . . 7 (𝑥 = 𝐴 → ((𝐹𝑥) × (𝐹𝑦)) = ((𝐹𝐴) × (𝐹𝑦)))
85, 7eqeq12d 2754 . . . . . 6 (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹𝐴) × (𝐹𝑦))))
9 oveq2 7263 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
109fveq2d 6760 . . . . . . 7 (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵)))
11 fveq2 6756 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7271 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝐴) × (𝐹𝑦)) = ((𝐹𝐴) × (𝐹𝐵)))
1310, 12eqeq12d 2754 . . . . . 6 (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹𝐴) × (𝐹𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
148, 13rspc2va 3563 . . . . 5 (((𝐴𝑋𝐵𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
1514expcom 413 . . . 4 (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
1615ad2antll 725 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
174, 16sylbi 216 . 2 (𝐹 ∈ (𝑅 RngHomo 𝑆) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
18173impib 1114 1 ((𝐹 ∈ (𝑅 RngHomo 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  Basecbs 16840  .rcmulr 16889   GrpHom cghm 18746  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-ghm 18747  df-abl 19304  df-rng0 45321  df-rnghomo 45333
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator