| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rnghmmul | Structured version Visualization version GIF version | ||
| Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.) |
| Ref | Expression |
|---|---|
| rnghmmul.x | ⊢ 𝑋 = (Base‘𝑅) |
| rnghmmul.m | ⊢ · = (.r‘𝑅) |
| rnghmmul.n | ⊢ × = (.r‘𝑆) |
| Ref | Expression |
|---|---|
| rnghmmul | ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmmul.x | . . . 4 ⊢ 𝑋 = (Base‘𝑅) | |
| 2 | rnghmmul.m | . . . 4 ⊢ · = (.r‘𝑅) | |
| 3 | rnghmmul.n | . . . 4 ⊢ × = (.r‘𝑆) | |
| 4 | 1, 2, 3 | isrnghm 20361 | . . 3 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))))) |
| 5 | fvoveq1 7375 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦))) | |
| 6 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝐹‘𝑥) = (𝐹‘𝐴)) | |
| 7 | 6 | oveq1d 7367 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((𝐹‘𝑥) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦))) |
| 8 | 5, 7 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)))) |
| 9 | oveq2 7360 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵)) | |
| 10 | 9 | fveq2d 6832 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵))) |
| 11 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑦 = 𝐵 → (𝐹‘𝑦) = (𝐹‘𝐵)) | |
| 12 | 11 | oveq2d 7368 | . . . . . . 7 ⊢ (𝑦 = 𝐵 → ((𝐹‘𝐴) × (𝐹‘𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| 13 | 10, 12 | eqeq12d 2749 | . . . . . 6 ⊢ (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹‘𝐴) × (𝐹‘𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
| 14 | 8, 13 | rspc2va 3585 | . . . . 5 ⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| 15 | 14 | expcom 413 | . . . 4 ⊢ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
| 16 | 15 | ad2antll 729 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦)))) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
| 17 | 4, 16 | sylbi 217 | . 2 ⊢ (𝐹 ∈ (𝑅 RngHom 𝑆) → ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)))) |
| 18 | 17 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 .rcmulr 17164 GrpHom cghm 19126 Rngcrng 20072 RngHom crnghm 20354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-map 8758 df-ghm 19127 df-abl 19697 df-rng 20073 df-rnghm 20356 |
| This theorem is referenced by: rngisom1 20386 |
| Copyright terms: Public domain | W3C validator |