MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnghmmul Structured version   Visualization version   GIF version

Theorem rnghmmul 20475
Description: A homomorphism of non-unital rings preserves multiplication. (Contributed by AV, 23-Feb-2020.)
Hypotheses
Ref Expression
rnghmmul.x 𝑋 = (Base‘𝑅)
rnghmmul.m · = (.r𝑅)
rnghmmul.n × = (.r𝑆)
Assertion
Ref Expression
rnghmmul ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))

Proof of Theorem rnghmmul
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghmmul.x . . . 4 𝑋 = (Base‘𝑅)
2 rnghmmul.m . . . 4 · = (.r𝑅)
3 rnghmmul.n . . . 4 × = (.r𝑆)
41, 2, 3isrnghm 20467 . . 3 (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ ((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))))
5 fvoveq1 7471 . . . . . . 7 (𝑥 = 𝐴 → (𝐹‘(𝑥 · 𝑦)) = (𝐹‘(𝐴 · 𝑦)))
6 fveq2 6920 . . . . . . . 8 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
76oveq1d 7463 . . . . . . 7 (𝑥 = 𝐴 → ((𝐹𝑥) × (𝐹𝑦)) = ((𝐹𝐴) × (𝐹𝑦)))
85, 7eqeq12d 2756 . . . . . 6 (𝑥 = 𝐴 → ((𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) ↔ (𝐹‘(𝐴 · 𝑦)) = ((𝐹𝐴) × (𝐹𝑦))))
9 oveq2 7456 . . . . . . . 8 (𝑦 = 𝐵 → (𝐴 · 𝑦) = (𝐴 · 𝐵))
109fveq2d 6924 . . . . . . 7 (𝑦 = 𝐵 → (𝐹‘(𝐴 · 𝑦)) = (𝐹‘(𝐴 · 𝐵)))
11 fveq2 6920 . . . . . . . 8 (𝑦 = 𝐵 → (𝐹𝑦) = (𝐹𝐵))
1211oveq2d 7464 . . . . . . 7 (𝑦 = 𝐵 → ((𝐹𝐴) × (𝐹𝑦)) = ((𝐹𝐴) × (𝐹𝐵)))
1310, 12eqeq12d 2756 . . . . . 6 (𝑦 = 𝐵 → ((𝐹‘(𝐴 · 𝑦)) = ((𝐹𝐴) × (𝐹𝑦)) ↔ (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
148, 13rspc2va 3647 . . . . 5 (((𝐴𝑋𝐵𝑋) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦))) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
1514expcom 413 . . . 4 (∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
1615ad2antll 728 . . 3 (((𝑅 ∈ Rng ∧ 𝑆 ∈ Rng) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥) × (𝐹𝑦)))) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
174, 16sylbi 217 . 2 (𝐹 ∈ (𝑅 RngHom 𝑆) → ((𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵))))
18173impib 1116 1 ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312   GrpHom cghm 19252  Rngcrng 20179   RngHom crnghm 20460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ghm 19253  df-abl 19825  df-rng 20180  df-rnghm 20462
This theorem is referenced by:  rngisom1  20492
  Copyright terms: Public domain W3C validator