MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghmd Structured version   Visualization version   GIF version

Theorem isghmd 19206
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
isghmd.x 𝑋 = (Base‘𝑆)
isghmd.y 𝑌 = (Base‘𝑇)
isghmd.a + = (+g𝑆)
isghmd.b = (+g𝑇)
isghmd.s (𝜑𝑆 ∈ Grp)
isghmd.t (𝜑𝑇 ∈ Grp)
isghmd.f (𝜑𝐹:𝑋𝑌)
isghmd.l ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isghmd (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem isghmd
StepHypRef Expression
1 isghmd.s . 2 (𝜑𝑆 ∈ Grp)
2 isghmd.t . 2 (𝜑𝑇 ∈ Grp)
3 isghmd.f . . 3 (𝜑𝐹:𝑋𝑌)
4 isghmd.l . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 3187 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
63, 5jca 511 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
7 isghmd.x . . 3 𝑋 = (Base‘𝑆)
8 isghmd.y . . 3 𝑌 = (Base‘𝑇)
9 isghmd.a . . 3 + = (+g𝑆)
10 isghmd.b . . 3 = (+g𝑇)
117, 8, 9, 10isghm 19196 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
121, 2, 6, 11syl21anbrc 1345 1 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wf 6526  cfv 6530  (class class class)co 7403  Basecbs 17226  +gcplusg 17269  Grpcgrp 18914   GrpHom cghm 19193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-ghm 19194
This theorem is referenced by:  ghmmhmb  19208  resghm  19213  conjghm  19230  qusghm  19236  ghmqusnsg  19263  ghmquskerlem3  19267  invoppggim  19341  galactghm  19383  pj1ghm  19682  frgpup1  19754  mulgghm  19807  ghmfghm  19809  invghm  19812  ghmplusg  19825  ringlghm  20270  ringrghm  20271  isrnghmd  20409  isrhmd  20446  lmodvsghm  20878  pwssplit2  21016  rngqiprngghm  21258  cygznlem3  21528  psgnghm  21538  frlmup1  21756  asclghm  21841  evlslem1  22038  mat1ghm  22419  scmatghm  22469  mat2pmatghm  22666  pm2mpghm  22752  reefgim  26410  lmodvslmhm  32990  imasghm  33316  qqhghm  33965  aks6d1c6isolem2  42134  frlmsnic  42510  mplmapghm  42526  imasgim  43071  amgmlemALT  49615
  Copyright terms: Public domain W3C validator