| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
| isghmd.a | ⊢ + = (+g‘𝑆) |
| isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
| isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
| isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
| 3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 5 | 4 | ralrimivva 3175 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 6 | 3, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
| 7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
| 9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
| 10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 11 | 7, 8, 9, 10 | isghm 19125 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
| 12 | 1, 2, 6, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 GrpHom cghm 19122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-ghm 19123 |
| This theorem is referenced by: ghmmhmb 19137 resghm 19142 conjghm 19159 qusghm 19165 ghmqusnsg 19192 ghmquskerlem3 19196 invoppggim 19270 galactghm 19314 pj1ghm 19613 frgpup1 19685 mulgghm 19738 ghmfghm 19740 invghm 19743 ghmplusg 19756 ringlghm 20228 ringrghm 20229 isrnghmd 20367 isrhmd 20403 lmodvsghm 20854 pwssplit2 20992 rngqiprngghm 21234 cygznlem3 21504 psgnghm 21515 frlmup1 21733 asclghm 21818 evlslem1 22015 mat1ghm 22396 scmatghm 22446 mat2pmatghm 22643 pm2mpghm 22729 reefgim 26385 lmodvslmhm 33025 imasghm 33315 qqhghm 33996 aks6d1c6isolem2 42207 frlmsnic 42572 mplmapghm 42588 imasgim 43132 amgmlemALT 49834 |
| Copyright terms: Public domain | W3C validator |