![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version |
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
isghmd.a | ⊢ + = (+g‘𝑆) |
isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3160 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | 3, 5 | jca 512 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
11 | 7, 8, 9, 10 | isghm 18103 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
12 | 1, 2, 6, 11 | syl21anbrc 1337 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∀wral 3107 ⟶wf 6228 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 +gcplusg 16398 Grpcgrp 17865 GrpHom cghm 18100 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-reu 3114 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-op 4485 df-uni 4752 df-iun 4833 df-br 4969 df-opab 5031 df-mpt 5048 df-id 5355 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-ov 7026 df-oprab 7027 df-mpo 7028 df-ghm 18101 |
This theorem is referenced by: ghmmhmb 18114 resghm 18119 conjghm 18134 qusghm 18140 invoppggim 18233 galactghm 18266 pj1ghm 18560 frgpup1 18632 mulgghm 18678 ghmfghm 18680 invghm 18683 ghmplusg 18693 ringlghm 19048 ringrghm 19049 isrhmd 19175 lmodvsghm 19389 pwssplit2 19526 asclghm 19804 evlslem1 19986 cygznlem3 20402 psgnghm 20410 frlmup1 20628 mat1ghm 20780 scmatghm 20830 mat2pmatghm 21026 pm2mpghm 21112 reefgim 24725 lmodvslmhm 30495 qqhghm 30842 frlmsnic 38697 imasgim 39206 isrnghmd 43673 amgmlemALT 44406 |
Copyright terms: Public domain | W3C validator |