Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version |
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
isghmd.a | ⊢ + = (+g‘𝑆) |
isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3120 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | 3, 5 | jca 515 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
11 | 7, 8, 9, 10 | isghm 18425 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
12 | 1, 2, 6, 11 | syl21anbrc 1341 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 +gcplusg 16623 Grpcgrp 18169 GrpHom cghm 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-ov 7153 df-oprab 7154 df-mpo 7155 df-ghm 18423 |
This theorem is referenced by: ghmmhmb 18436 resghm 18441 conjghm 18456 qusghm 18462 invoppggim 18555 galactghm 18599 pj1ghm 18896 frgpup1 18968 mulgghm 19017 ghmfghm 19019 invghm 19022 ghmplusg 19034 ringlghm 19425 ringrghm 19426 isrhmd 19552 lmodvsghm 19763 pwssplit2 19900 cygznlem3 20337 psgnghm 20345 frlmup1 20563 asclghm 20645 evlslem1 20845 mat1ghm 21183 scmatghm 21233 mat2pmatghm 21430 pm2mpghm 21516 reefgim 25144 lmodvslmhm 30836 qqhghm 31457 frlmsnic 39770 imasgim 40417 isrnghmd 44893 amgmlemALT 45722 |
Copyright terms: Public domain | W3C validator |