MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isghmd Structured version   Visualization version   GIF version

Theorem isghmd 19164
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.)
Hypotheses
Ref Expression
isghmd.x 𝑋 = (Base‘𝑆)
isghmd.y 𝑌 = (Base‘𝑇)
isghmd.a + = (+g𝑆)
isghmd.b = (+g𝑇)
isghmd.s (𝜑𝑆 ∈ Grp)
isghmd.t (𝜑𝑇 ∈ Grp)
isghmd.f (𝜑𝐹:𝑋𝑌)
isghmd.l ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
Assertion
Ref Expression
isghmd (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Distinct variable groups:   𝜑,𝑥,𝑦   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦

Proof of Theorem isghmd
StepHypRef Expression
1 isghmd.s . 2 (𝜑𝑆 ∈ Grp)
2 isghmd.t . 2 (𝜑𝑇 ∈ Grp)
3 isghmd.f . . 3 (𝜑𝐹:𝑋𝑌)
4 isghmd.l . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
54ralrimivva 3181 . . 3 (𝜑 → ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
63, 5jca 511 . 2 (𝜑 → (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))))
7 isghmd.x . . 3 𝑋 = (Base‘𝑆)
8 isghmd.y . . 3 𝑌 = (Base‘𝑇)
9 isghmd.a . . 3 + = (+g𝑆)
10 isghmd.b . . 3 = (+g𝑇)
117, 8, 9, 10isghm 19154 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))))
121, 2, 6, 11syl21anbrc 1345 1 (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  wf 6510  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  Grpcgrp 18872   GrpHom cghm 19151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ghm 19152
This theorem is referenced by:  ghmmhmb  19166  resghm  19171  conjghm  19188  qusghm  19194  ghmqusnsg  19221  ghmquskerlem3  19225  invoppggim  19299  galactghm  19341  pj1ghm  19640  frgpup1  19712  mulgghm  19765  ghmfghm  19767  invghm  19770  ghmplusg  19783  ringlghm  20228  ringrghm  20229  isrnghmd  20367  isrhmd  20404  lmodvsghm  20836  pwssplit2  20974  rngqiprngghm  21216  cygznlem3  21486  psgnghm  21496  frlmup1  21714  asclghm  21799  evlslem1  21996  mat1ghm  22377  scmatghm  22427  mat2pmatghm  22624  pm2mpghm  22710  reefgim  26367  lmodvslmhm  32997  imasghm  33333  qqhghm  33985  aks6d1c6isolem2  42170  frlmsnic  42535  mplmapghm  42551  imasgim  43096  amgmlemALT  49796
  Copyright terms: Public domain W3C validator