Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version |
Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
Ref | Expression |
---|---|
isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
isghmd.a | ⊢ + = (+g‘𝑆) |
isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
Ref | Expression |
---|---|
isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
5 | 4 | ralrimivva 3114 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
6 | 3, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
11 | 7, 8, 9, 10 | isghm 18749 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
12 | 1, 2, 6, 11 | syl21anbrc 1342 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Grpcgrp 18492 GrpHom cghm 18746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-ghm 18747 |
This theorem is referenced by: ghmmhmb 18760 resghm 18765 conjghm 18780 qusghm 18786 invoppggim 18882 galactghm 18927 pj1ghm 19224 frgpup1 19296 mulgghm 19345 ghmfghm 19347 invghm 19350 ghmplusg 19362 ringlghm 19758 ringrghm 19759 isrhmd 19888 lmodvsghm 20099 pwssplit2 20237 cygznlem3 20689 psgnghm 20697 frlmup1 20915 asclghm 20997 evlslem1 21202 mat1ghm 21540 scmatghm 21590 mat2pmatghm 21787 pm2mpghm 21873 reefgim 25514 lmodvslmhm 31212 qqhghm 31838 frlmsnic 40188 imasgim 40841 isrnghmd 45348 amgmlemALT 46393 |
Copyright terms: Public domain | W3C validator |