| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isghmd | Structured version Visualization version GIF version | ||
| Description: Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| isghmd.x | ⊢ 𝑋 = (Base‘𝑆) |
| isghmd.y | ⊢ 𝑌 = (Base‘𝑇) |
| isghmd.a | ⊢ + = (+g‘𝑆) |
| isghmd.b | ⊢ ⨣ = (+g‘𝑇) |
| isghmd.s | ⊢ (𝜑 → 𝑆 ∈ Grp) |
| isghmd.t | ⊢ (𝜑 → 𝑇 ∈ Grp) |
| isghmd.f | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| isghmd.l | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| Ref | Expression |
|---|---|
| isghmd | ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isghmd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ Grp) | |
| 2 | isghmd.t | . 2 ⊢ (𝜑 → 𝑇 ∈ Grp) | |
| 3 | isghmd.f | . . 3 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 4 | isghmd.l | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 5 | 4 | ralrimivva 3180 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 6 | 3, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))) |
| 7 | isghmd.x | . . 3 ⊢ 𝑋 = (Base‘𝑆) | |
| 8 | isghmd.y | . . 3 ⊢ 𝑌 = (Base‘𝑇) | |
| 9 | isghmd.a | . . 3 ⊢ + = (+g‘𝑆) | |
| 10 | isghmd.b | . . 3 ⊢ ⨣ = (+g‘𝑇) | |
| 11 | 7, 8, 9, 10 | isghm 19147 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))))) |
| 12 | 1, 2, 6, 11 | syl21anbrc 1345 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Grpcgrp 18865 GrpHom cghm 19144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-map 8801 df-ghm 19145 |
| This theorem is referenced by: ghmmhmb 19159 resghm 19164 conjghm 19181 qusghm 19187 ghmqusnsg 19214 ghmquskerlem3 19218 invoppggim 19292 galactghm 19334 pj1ghm 19633 frgpup1 19705 mulgghm 19758 ghmfghm 19760 invghm 19763 ghmplusg 19776 ringlghm 20221 ringrghm 20222 isrnghmd 20360 isrhmd 20397 lmodvsghm 20829 pwssplit2 20967 rngqiprngghm 21209 cygznlem3 21479 psgnghm 21489 frlmup1 21707 asclghm 21792 evlslem1 21989 mat1ghm 22370 scmatghm 22420 mat2pmatghm 22617 pm2mpghm 22703 reefgim 26360 lmodvslmhm 32990 imasghm 33326 qqhghm 33978 aks6d1c6isolem2 42163 frlmsnic 42528 mplmapghm 42544 imasgim 43089 amgmlemALT 49792 |
| Copyright terms: Public domain | W3C validator |