MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincl Structured version   Visualization version   GIF version

Theorem joincl 18344
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joincl.b 𝐵 = (Base‘𝐾)
joincl.j = (join‘𝐾)
joincl.k (𝜑𝐾𝑉)
joincl.x (𝜑𝑋𝐵)
joincl.y (𝜑𝑌𝐵)
joincl.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joincl (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem joincl
StepHypRef Expression
1 eqid 2730 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joincl.j . . 3 = (join‘𝐾)
3 joincl.k . . 3 (𝜑𝐾𝑉)
4 joincl.x . . 3 (𝜑𝑋𝐵)
5 joincl.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 18343 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joincl.b . . 3 𝐵 = (Base‘𝐾)
8 joincl.e . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
91, 2, 3, 4, 5joindef 18342 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾)))
108, 9mpbid 232 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom (lub‘𝐾))
117, 1, 3, 10lubcl 18323 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵)
126, 11eqeltrd 2829 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cpr 4594  cop 4598  dom cdm 5641  cfv 6514  (class class class)co 7390  Basecbs 17186  lubclub 18277  joincjn 18279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-lub 18312  df-join 18314
This theorem is referenced by:  joinle  18352  latlem  18403
  Copyright terms: Public domain W3C validator