MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joincl Structured version   Visualization version   GIF version

Theorem joincl 18370
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.)
Hypotheses
Ref Expression
joincl.b 𝐵 = (Base‘𝐾)
joincl.j = (join‘𝐾)
joincl.k (𝜑𝐾𝑉)
joincl.x (𝜑𝑋𝐵)
joincl.y (𝜑𝑌𝐵)
joincl.e (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
Assertion
Ref Expression
joincl (𝜑 → (𝑋 𝑌) ∈ 𝐵)

Proof of Theorem joincl
StepHypRef Expression
1 eqid 2728 . . 3 (lub‘𝐾) = (lub‘𝐾)
2 joincl.j . . 3 = (join‘𝐾)
3 joincl.k . . 3 (𝜑𝐾𝑉)
4 joincl.x . . 3 (𝜑𝑋𝐵)
5 joincl.y . . 3 (𝜑𝑌𝐵)
61, 2, 3, 4, 5joinval 18369 . 2 (𝜑 → (𝑋 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌}))
7 joincl.b . . 3 𝐵 = (Base‘𝐾)
8 joincl.e . . . 4 (𝜑 → ⟨𝑋, 𝑌⟩ ∈ dom )
91, 2, 3, 4, 5joindef 18368 . . . 4 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾)))
108, 9mpbid 231 . . 3 (𝜑 → {𝑋, 𝑌} ∈ dom (lub‘𝐾))
117, 1, 3, 10lubcl 18349 . 2 (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵)
126, 11eqeltrd 2829 1 (𝜑 → (𝑋 𝑌) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  {cpr 4631  cop 4635  dom cdm 5678  cfv 6548  (class class class)co 7420  Basecbs 17180  lubclub 18301  joincjn 18303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-lub 18338  df-join 18340
This theorem is referenced by:  joinle  18378  latlem  18429
  Copyright terms: Public domain W3C validator