Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joincl | Structured version Visualization version GIF version |
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joincl.b | β’ π΅ = (BaseβπΎ) |
joincl.j | β’ β¨ = (joinβπΎ) |
joincl.k | β’ (π β πΎ β π) |
joincl.x | β’ (π β π β π΅) |
joincl.y | β’ (π β π β π΅) |
joincl.e | β’ (π β β¨π, πβ© β dom β¨ ) |
Ref | Expression |
---|---|
joincl | β’ (π β (π β¨ π) β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 β’ (lubβπΎ) = (lubβπΎ) | |
2 | joincl.j | . . 3 β’ β¨ = (joinβπΎ) | |
3 | joincl.k | . . 3 β’ (π β πΎ β π) | |
4 | joincl.x | . . 3 β’ (π β π β π΅) | |
5 | joincl.y | . . 3 β’ (π β π β π΅) | |
6 | 1, 2, 3, 4, 5 | joinval 18192 | . 2 β’ (π β (π β¨ π) = ((lubβπΎ)β{π, π})) |
7 | joincl.b | . . 3 β’ π΅ = (BaseβπΎ) | |
8 | joincl.e | . . . 4 β’ (π β β¨π, πβ© β dom β¨ ) | |
9 | 1, 2, 3, 4, 5 | joindef 18191 | . . . 4 β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom (lubβπΎ))) |
10 | 8, 9 | mpbid 231 | . . 3 β’ (π β {π, π} β dom (lubβπΎ)) |
11 | 7, 1, 3, 10 | lubcl 18172 | . 2 β’ (π β ((lubβπΎ)β{π, π}) β π΅) |
12 | 6, 11 | eqeltrd 2837 | 1 β’ (π β (π β¨ π) β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {cpr 4575 β¨cop 4579 dom cdm 5620 βcfv 6479 (class class class)co 7337 Basecbs 17009 lubclub 18124 joincjn 18126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-lub 18161 df-join 18163 |
This theorem is referenced by: joinle 18201 latlem 18252 |
Copyright terms: Public domain | W3C validator |