![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joincl | Structured version Visualization version GIF version |
Description: Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
Ref | Expression |
---|---|
joincl.b | ⊢ 𝐵 = (Base‘𝐾) |
joincl.j | ⊢ ∨ = (join‘𝐾) |
joincl.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joincl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
joincl.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
joincl.e | ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) |
Ref | Expression |
---|---|
joincl | ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
2 | joincl.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | joincl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
4 | joincl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | joincl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | 1, 2, 3, 4, 5 | joinval 18369 | . 2 ⊢ (𝜑 → (𝑋 ∨ 𝑌) = ((lub‘𝐾)‘{𝑋, 𝑌})) |
7 | joincl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
8 | joincl.e | . . . 4 ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) | |
9 | 1, 2, 3, 4, 5 | joindef 18368 | . . . 4 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom (lub‘𝐾))) |
10 | 8, 9 | mpbid 231 | . . 3 ⊢ (𝜑 → {𝑋, 𝑌} ∈ dom (lub‘𝐾)) |
11 | 7, 1, 3, 10 | lubcl 18349 | . 2 ⊢ (𝜑 → ((lub‘𝐾)‘{𝑋, 𝑌}) ∈ 𝐵) |
12 | 6, 11 | eqeltrd 2829 | 1 ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {cpr 4631 〈cop 4635 dom cdm 5678 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 lubclub 18301 joincjn 18303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-lub 18338 df-join 18340 |
This theorem is referenced by: joinle 18378 latlem 18429 |
Copyright terms: Public domain | W3C validator |