| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joindef | Structured version Visualization version GIF version | ||
| Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| joindef.u | ⊢ 𝑈 = (lub‘𝐾) |
| joindef.j | ⊢ ∨ = (join‘𝐾) |
| joindef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
| joindef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
| joindef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
| Ref | Expression |
|---|---|
| joindef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
| 2 | joindef.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | joindef.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 4 | 2, 3 | joindm 18279 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
| 5 | 4 | eleq2d 2817 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈})) |
| 6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈})) |
| 7 | joindef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
| 8 | joindef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
| 9 | preq1 4686 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
| 10 | 9 | eleq1d 2816 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑦} ∈ dom 𝑈)) |
| 11 | preq2 4687 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
| 12 | 11 | eleq1d 2816 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
| 13 | 10, 12 | opelopabg 5478 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
| 14 | 7, 8, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
| 15 | 6, 14 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cpr 4578 〈cop 4582 {copab 5153 dom cdm 5616 ‘cfv 6481 lubclub 18215 joincjn 18217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-oprab 7350 df-lub 18250 df-join 18252 |
| This theorem is referenced by: joinval 18281 joincl 18282 joindmss 18283 joineu 18286 clatl 18414 joindm2 49005 |
| Copyright terms: Public domain | W3C validator |