MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindef Structured version   Visualization version   GIF version

Theorem joindef 18329
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u π‘ˆ = (lubβ€˜πΎ)
joindef.j ∨ = (joinβ€˜πΎ)
joindef.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
joindef.x (πœ‘ β†’ 𝑋 ∈ π‘Š)
joindef.y (πœ‘ β†’ π‘Œ ∈ 𝑍)
Assertion
Ref Expression
joindef (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))

Proof of Theorem joindef
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 joindef.u . . . . 5 π‘ˆ = (lubβ€˜πΎ)
3 joindef.j . . . . 5 ∨ = (joinβ€˜πΎ)
42, 3joindm 18328 . . . 4 (𝐾 ∈ 𝑉 β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ})
54eleq2d 2820 . . 3 (𝐾 ∈ 𝑉 β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}))
61, 5syl 17 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}))
7 joindef.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘Š)
8 joindef.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑍)
9 preq1 4738 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯, 𝑦} = {𝑋, 𝑦})
109eleq1d 2819 . . . 4 (π‘₯ = 𝑋 β†’ ({π‘₯, 𝑦} ∈ dom π‘ˆ ↔ {𝑋, 𝑦} ∈ dom π‘ˆ))
11 preq2 4739 . . . . 5 (𝑦 = π‘Œ β†’ {𝑋, 𝑦} = {𝑋, π‘Œ})
1211eleq1d 2819 . . . 4 (𝑦 = π‘Œ β†’ ({𝑋, 𝑦} ∈ dom π‘ˆ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
1310, 12opelopabg 5539 . . 3 ((𝑋 ∈ π‘Š ∧ π‘Œ ∈ 𝑍) β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ} ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
147, 8, 13syl2anc 585 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ} ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
156, 14bitrd 279 1 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1542   ∈ wcel 2107  {cpr 4631  βŸ¨cop 4635  {copab 5211  dom cdm 5677  β€˜cfv 6544  lubclub 18262  joincjn 18264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-oprab 7413  df-lub 18299  df-join 18301
This theorem is referenced by:  joinval  18330  joincl  18331  joindmss  18332  joineu  18335  clatl  18461  joindm2  47601
  Copyright terms: Public domain W3C validator