Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindef Structured version   Visualization version   GIF version

Theorem joindef 17605
 Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joindef (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))

Proof of Theorem joindef
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . 3 (𝜑𝐾𝑉)
2 joindef.u . . . . 5 𝑈 = (lub‘𝐾)
3 joindef.j . . . . 5 = (join‘𝐾)
42, 3joindm 17604 . . . 4 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈})
54eleq2d 2899 . . 3 (𝐾𝑉 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
61, 5syl 17 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
7 joindef.x . . 3 (𝜑𝑋𝑊)
8 joindef.y . . 3 (𝜑𝑌𝑍)
9 preq1 4643 . . . . 5 (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦})
109eleq1d 2898 . . . 4 (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑦} ∈ dom 𝑈))
11 preq2 4644 . . . . 5 (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌})
1211eleq1d 2898 . . . 4 (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
1310, 12opelopabg 5402 . . 3 ((𝑋𝑊𝑌𝑍) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
147, 8, 13syl2anc 587 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
156, 14bitrd 282 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2114  {cpr 4541  ⟨cop 4545  {copab 5104  dom cdm 5532  ‘cfv 6334  lubclub 17543  joincjn 17545 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-oprab 7144  df-lub 17575  df-join 17577 This theorem is referenced by:  joinval  17606  joincl  17607  joindmss  17608  joineu  17611  clatl  17717
 Copyright terms: Public domain W3C validator