![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joindef | Structured version Visualization version GIF version |
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joindef.u | β’ π = (lubβπΎ) |
joindef.j | β’ β¨ = (joinβπΎ) |
joindef.k | β’ (π β πΎ β π) |
joindef.x | β’ (π β π β π) |
joindef.y | β’ (π β π β π) |
Ref | Expression |
---|---|
joindef | β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindef.k | . . 3 β’ (π β πΎ β π) | |
2 | joindef.u | . . . . 5 β’ π = (lubβπΎ) | |
3 | joindef.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
4 | 2, 3 | joindm 18328 | . . . 4 β’ (πΎ β π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π}) |
5 | 4 | eleq2d 2820 | . . 3 β’ (πΎ β π β (β¨π, πβ© β dom β¨ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π})) |
6 | 1, 5 | syl 17 | . 2 β’ (π β (β¨π, πβ© β dom β¨ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π})) |
7 | joindef.x | . . 3 β’ (π β π β π) | |
8 | joindef.y | . . 3 β’ (π β π β π) | |
9 | preq1 4738 | . . . . 5 β’ (π₯ = π β {π₯, π¦} = {π, π¦}) | |
10 | 9 | eleq1d 2819 | . . . 4 β’ (π₯ = π β ({π₯, π¦} β dom π β {π, π¦} β dom π)) |
11 | preq2 4739 | . . . . 5 β’ (π¦ = π β {π, π¦} = {π, π}) | |
12 | 11 | eleq1d 2819 | . . . 4 β’ (π¦ = π β ({π, π¦} β dom π β {π, π} β dom π)) |
13 | 10, 12 | opelopabg 5539 | . . 3 β’ ((π β π β§ π β π) β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} β {π, π} β dom π)) |
14 | 7, 8, 13 | syl2anc 585 | . 2 β’ (π β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} β {π, π} β dom π)) |
15 | 6, 14 | bitrd 279 | 1 β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1542 β wcel 2107 {cpr 4631 β¨cop 4635 {copab 5211 dom cdm 5677 βcfv 6544 lubclub 18262 joincjn 18264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-oprab 7413 df-lub 18299 df-join 18301 |
This theorem is referenced by: joinval 18330 joincl 18331 joindmss 18332 joineu 18335 clatl 18461 joindm2 47601 |
Copyright terms: Public domain | W3C validator |