Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joindef | Structured version Visualization version GIF version |
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joindef.u | ⊢ 𝑈 = (lub‘𝐾) |
joindef.j | ⊢ ∨ = (join‘𝐾) |
joindef.k | ⊢ (𝜑 → 𝐾 ∈ 𝑉) |
joindef.x | ⊢ (𝜑 → 𝑋 ∈ 𝑊) |
joindef.y | ⊢ (𝜑 → 𝑌 ∈ 𝑍) |
Ref | Expression |
---|---|
joindef | ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindef.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝑉) | |
2 | joindef.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
3 | joindef.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
4 | 2, 3 | joindm 18190 | . . . 4 ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) |
5 | 4 | eleq2d 2823 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈})) |
6 | 1, 5 | syl 17 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ 〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈})) |
7 | joindef.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑊) | |
8 | joindef.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑍) | |
9 | preq1 4685 | . . . . 5 ⊢ (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦}) | |
10 | 9 | eleq1d 2822 | . . . 4 ⊢ (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑦} ∈ dom 𝑈)) |
11 | preq2 4686 | . . . . 5 ⊢ (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌}) | |
12 | 11 | eleq1d 2822 | . . . 4 ⊢ (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
13 | 10, 12 | opelopabg 5486 | . . 3 ⊢ ((𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍) → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
14 | 7, 8, 13 | syl2anc 585 | . 2 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
15 | 6, 14 | bitrd 279 | 1 ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 {cpr 4579 〈cop 4583 {copab 5158 dom cdm 5624 ‘cfv 6483 lubclub 18124 joincjn 18126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-id 5522 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-riota 7297 df-oprab 7345 df-lub 18161 df-join 18163 |
This theorem is referenced by: joinval 18192 joincl 18193 joindmss 18194 joineu 18197 clatl 18323 joindm2 46680 |
Copyright terms: Public domain | W3C validator |