MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindef Structured version   Visualization version   GIF version

Theorem joindef 18284
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joindef (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))

Proof of Theorem joindef
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . 3 (𝜑𝐾𝑉)
2 joindef.u . . . . 5 𝑈 = (lub‘𝐾)
3 joindef.j . . . . 5 = (join‘𝐾)
42, 3joindm 18283 . . . 4 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈})
54eleq2d 2819 . . 3 (𝐾𝑉 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
61, 5syl 17 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
7 joindef.x . . 3 (𝜑𝑋𝑊)
8 joindef.y . . 3 (𝜑𝑌𝑍)
9 preq1 4687 . . . . 5 (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦})
109eleq1d 2818 . . . 4 (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑦} ∈ dom 𝑈))
11 preq2 4688 . . . . 5 (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌})
1211eleq1d 2818 . . . 4 (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
1310, 12opelopabg 5483 . . 3 ((𝑋𝑊𝑌𝑍) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
147, 8, 13syl2anc 584 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
156, 14bitrd 279 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {cpr 4579  cop 4583  {copab 5157  dom cdm 5621  cfv 6488  lubclub 18219  joincjn 18221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-oprab 7358  df-lub 18254  df-join 18256
This theorem is referenced by:  joinval  18285  joincl  18286  joindmss  18287  joineu  18290  clatl  18418  joindm2  49095
  Copyright terms: Public domain W3C validator