![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joindef | Structured version Visualization version GIF version |
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joindef.u | β’ π = (lubβπΎ) |
joindef.j | β’ β¨ = (joinβπΎ) |
joindef.k | β’ (π β πΎ β π) |
joindef.x | β’ (π β π β π) |
joindef.y | β’ (π β π β π) |
Ref | Expression |
---|---|
joindef | β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joindef.k | . . 3 β’ (π β πΎ β π) | |
2 | joindef.u | . . . . 5 β’ π = (lubβπΎ) | |
3 | joindef.j | . . . . 5 β’ β¨ = (joinβπΎ) | |
4 | 2, 3 | joindm 18374 | . . . 4 β’ (πΎ β π β dom β¨ = {β¨π₯, π¦β© β£ {π₯, π¦} β dom π}) |
5 | 4 | eleq2d 2815 | . . 3 β’ (πΎ β π β (β¨π, πβ© β dom β¨ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π})) |
6 | 1, 5 | syl 17 | . 2 β’ (π β (β¨π, πβ© β dom β¨ β β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π})) |
7 | joindef.x | . . 3 β’ (π β π β π) | |
8 | joindef.y | . . 3 β’ (π β π β π) | |
9 | preq1 4742 | . . . . 5 β’ (π₯ = π β {π₯, π¦} = {π, π¦}) | |
10 | 9 | eleq1d 2814 | . . . 4 β’ (π₯ = π β ({π₯, π¦} β dom π β {π, π¦} β dom π)) |
11 | preq2 4743 | . . . . 5 β’ (π¦ = π β {π, π¦} = {π, π}) | |
12 | 11 | eleq1d 2814 | . . . 4 β’ (π¦ = π β ({π, π¦} β dom π β {π, π} β dom π)) |
13 | 10, 12 | opelopabg 5544 | . . 3 β’ ((π β π β§ π β π) β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} β {π, π} β dom π)) |
14 | 7, 8, 13 | syl2anc 582 | . 2 β’ (π β (β¨π, πβ© β {β¨π₯, π¦β© β£ {π₯, π¦} β dom π} β {π, π} β dom π)) |
15 | 6, 14 | bitrd 278 | 1 β’ (π β (β¨π, πβ© β dom β¨ β {π, π} β dom π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 {cpr 4634 β¨cop 4638 {copab 5214 dom cdm 5682 βcfv 6553 lubclub 18308 joincjn 18310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-oprab 7430 df-lub 18345 df-join 18347 |
This theorem is referenced by: joinval 18376 joincl 18377 joindmss 18378 joineu 18381 clatl 18507 joindm2 48065 |
Copyright terms: Public domain | W3C validator |