MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindef Structured version   Visualization version   GIF version

Theorem joindef 18375
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u π‘ˆ = (lubβ€˜πΎ)
joindef.j ∨ = (joinβ€˜πΎ)
joindef.k (πœ‘ β†’ 𝐾 ∈ 𝑉)
joindef.x (πœ‘ β†’ 𝑋 ∈ π‘Š)
joindef.y (πœ‘ β†’ π‘Œ ∈ 𝑍)
Assertion
Ref Expression
joindef (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))

Proof of Theorem joindef
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . 3 (πœ‘ β†’ 𝐾 ∈ 𝑉)
2 joindef.u . . . . 5 π‘ˆ = (lubβ€˜πΎ)
3 joindef.j . . . . 5 ∨ = (joinβ€˜πΎ)
42, 3joindm 18374 . . . 4 (𝐾 ∈ 𝑉 β†’ dom ∨ = {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ})
54eleq2d 2815 . . 3 (𝐾 ∈ 𝑉 β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}))
61, 5syl 17 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ}))
7 joindef.x . . 3 (πœ‘ β†’ 𝑋 ∈ π‘Š)
8 joindef.y . . 3 (πœ‘ β†’ π‘Œ ∈ 𝑍)
9 preq1 4742 . . . . 5 (π‘₯ = 𝑋 β†’ {π‘₯, 𝑦} = {𝑋, 𝑦})
109eleq1d 2814 . . . 4 (π‘₯ = 𝑋 β†’ ({π‘₯, 𝑦} ∈ dom π‘ˆ ↔ {𝑋, 𝑦} ∈ dom π‘ˆ))
11 preq2 4743 . . . . 5 (𝑦 = π‘Œ β†’ {𝑋, 𝑦} = {𝑋, π‘Œ})
1211eleq1d 2814 . . . 4 (𝑦 = π‘Œ β†’ ({𝑋, 𝑦} ∈ dom π‘ˆ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
1310, 12opelopabg 5544 . . 3 ((𝑋 ∈ π‘Š ∧ π‘Œ ∈ 𝑍) β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ} ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
147, 8, 13syl2anc 582 . 2 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ {⟨π‘₯, π‘¦βŸ© ∣ {π‘₯, 𝑦} ∈ dom π‘ˆ} ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
156, 14bitrd 278 1 (πœ‘ β†’ (βŸ¨π‘‹, π‘ŒβŸ© ∈ dom ∨ ↔ {𝑋, π‘Œ} ∈ dom π‘ˆ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   = wceq 1533   ∈ wcel 2098  {cpr 4634  βŸ¨cop 4638  {copab 5214  dom cdm 5682  β€˜cfv 6553  lubclub 18308  joincjn 18310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-oprab 7430  df-lub 18345  df-join 18347
This theorem is referenced by:  joinval  18376  joincl  18377  joindmss  18378  joineu  18381  clatl  18507  joindm2  48065
  Copyright terms: Public domain W3C validator