MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joindef Structured version   Visualization version   GIF version

Theorem joindef 18391
Description: Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joindef.u 𝑈 = (lub‘𝐾)
joindef.j = (join‘𝐾)
joindef.k (𝜑𝐾𝑉)
joindef.x (𝜑𝑋𝑊)
joindef.y (𝜑𝑌𝑍)
Assertion
Ref Expression
joindef (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))

Proof of Theorem joindef
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 joindef.k . . 3 (𝜑𝐾𝑉)
2 joindef.u . . . . 5 𝑈 = (lub‘𝐾)
3 joindef.j . . . . 5 = (join‘𝐾)
42, 3joindm 18390 . . . 4 (𝐾𝑉 → dom = {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈})
54eleq2d 2821 . . 3 (𝐾𝑉 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
61, 5syl 17 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈}))
7 joindef.x . . 3 (𝜑𝑋𝑊)
8 joindef.y . . 3 (𝜑𝑌𝑍)
9 preq1 4714 . . . . 5 (𝑥 = 𝑋 → {𝑥, 𝑦} = {𝑋, 𝑦})
109eleq1d 2820 . . . 4 (𝑥 = 𝑋 → ({𝑥, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑦} ∈ dom 𝑈))
11 preq2 4715 . . . . 5 (𝑦 = 𝑌 → {𝑋, 𝑦} = {𝑋, 𝑌})
1211eleq1d 2820 . . . 4 (𝑦 = 𝑌 → ({𝑋, 𝑦} ∈ dom 𝑈 ↔ {𝑋, 𝑌} ∈ dom 𝑈))
1310, 12opelopabg 5518 . . 3 ((𝑋𝑊𝑌𝑍) → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
147, 8, 13syl2anc 584 . 2 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ {𝑥, 𝑦} ∈ dom 𝑈} ↔ {𝑋, 𝑌} ∈ dom 𝑈))
156, 14bitrd 279 1 (𝜑 → (⟨𝑋, 𝑌⟩ ∈ dom ↔ {𝑋, 𝑌} ∈ dom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {cpr 4608  cop 4612  {copab 5186  dom cdm 5659  cfv 6536  lubclub 18326  joincjn 18328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-oprab 7414  df-lub 18361  df-join 18363
This theorem is referenced by:  joinval  18392  joincl  18393  joindmss  18394  joineu  18397  clatl  18523  joindm2  48909
  Copyright terms: Public domain W3C validator