Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elkgen | Structured version Visualization version GIF version |
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.) |
Ref | Expression |
---|---|
elkgen | ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | kgenval 22594 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))}) | |
2 | 1 | eleq2d 2824 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))})) |
3 | ineq1 4136 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑘) = (𝐴 ∩ 𝑘)) | |
4 | 3 | eleq1d 2823 | . . . . . 6 ⊢ (𝑥 = 𝐴 → ((𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘) ↔ (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) |
5 | 4 | imbi2d 340 | . . . . 5 ⊢ (𝑥 = 𝐴 → (((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
6 | 5 | ralbidv 3120 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
7 | 6 | elrab 3617 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘)))) |
8 | toponmax 21983 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
9 | elpw2g 5263 | . . . . 5 ⊢ (𝑋 ∈ 𝐽 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
11 | 10 | anbi1d 629 | . . 3 ⊢ (𝐽 ∈ (TopOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
12 | 7, 11 | syl5bb 282 | . 2 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝑥 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))} ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
13 | 2, 12 | bitrd 278 | 1 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽 ↾t 𝑘) ∈ Comp → (𝐴 ∩ 𝑘) ∈ (𝐽 ↾t 𝑘))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∩ cin 3882 ⊆ wss 3883 𝒫 cpw 4530 ‘cfv 6418 (class class class)co 7255 ↾t crest 17048 TopOnctopon 21967 Compccmp 22445 𝑘Genckgen 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-top 21951 df-topon 21968 df-kgen 22593 |
This theorem is referenced by: kgeni 22596 kgentopon 22597 kgenss 22602 kgenidm 22606 iskgen3 22608 kgen2ss 22614 kgencn 22615 kgencn3 22617 txkgen 22711 |
Copyright terms: Public domain | W3C validator |