MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elkgen Structured version   Visualization version   GIF version

Theorem elkgen 23421
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
elkgen (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑘,𝑋

Proof of Theorem elkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgenval 23420 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
21eleq2d 2814 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))}))
3 ineq1 4164 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
43eleq1d 2813 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑘) ∈ (𝐽t 𝑘) ↔ (𝐴𝑘) ∈ (𝐽t 𝑘)))
54imbi2d 340 . . . . 5 (𝑥 = 𝐴 → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
65ralbidv 3152 . . . 4 (𝑥 = 𝐴 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
76elrab 3648 . . 3 (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
8 toponmax 22811 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
9 elpw2g 5272 . . . . 5 (𝑋𝐽 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
108, 9syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1110anbi1d 631 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
127, 11bitrid 283 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
132, 12bitrd 279 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  cin 3902  wss 3903  𝒫 cpw 4551  cfv 6482  (class class class)co 7349  t crest 17324  TopOnctopon 22795  Compccmp 23271  𝑘Genckgen 23418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-top 22779  df-topon 22796  df-kgen 23419
This theorem is referenced by:  kgeni  23422  kgentopon  23423  kgenss  23428  kgenidm  23432  iskgen3  23434  kgen2ss  23440  kgencn  23441  kgencn3  23443  txkgen  23537
  Copyright terms: Public domain W3C validator