MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elkgen Structured version   Visualization version   GIF version

Theorem elkgen 23474
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
elkgen (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑘,𝑋

Proof of Theorem elkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgenval 23473 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
21eleq2d 2820 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))}))
3 ineq1 4188 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
43eleq1d 2819 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑘) ∈ (𝐽t 𝑘) ↔ (𝐴𝑘) ∈ (𝐽t 𝑘)))
54imbi2d 340 . . . . 5 (𝑥 = 𝐴 → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
65ralbidv 3163 . . . 4 (𝑥 = 𝐴 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
76elrab 3671 . . 3 (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
8 toponmax 22864 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
9 elpw2g 5303 . . . . 5 (𝑋𝐽 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
108, 9syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1110anbi1d 631 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
127, 11bitrid 283 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
132, 12bitrd 279 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  {crab 3415  cin 3925  wss 3926  𝒫 cpw 4575  cfv 6531  (class class class)co 7405  t crest 17434  TopOnctopon 22848  Compccmp 23324  𝑘Genckgen 23471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-top 22832  df-topon 22849  df-kgen 23472
This theorem is referenced by:  kgeni  23475  kgentopon  23476  kgenss  23481  kgenidm  23485  iskgen3  23487  kgen2ss  23493  kgencn  23494  kgencn3  23496  txkgen  23590
  Copyright terms: Public domain W3C validator