MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elkgen Structured version   Visualization version   GIF version

Theorem elkgen 22120
Description: Value of the compact generator. (Contributed by Mario Carneiro, 20-Mar-2015.)
Assertion
Ref Expression
elkgen (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Distinct variable groups:   𝐴,𝑘   𝑘,𝐽   𝑘,𝑋

Proof of Theorem elkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgenval 22119 . . 3 (𝐽 ∈ (TopOn‘𝑋) → (𝑘Gen‘𝐽) = {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))})
21eleq2d 2896 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ 𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))}))
3 ineq1 4159 . . . . . . 7 (𝑥 = 𝐴 → (𝑥𝑘) = (𝐴𝑘))
43eleq1d 2895 . . . . . 6 (𝑥 = 𝐴 → ((𝑥𝑘) ∈ (𝐽t 𝑘) ↔ (𝐴𝑘) ∈ (𝐽t 𝑘)))
54imbi2d 343 . . . . 5 (𝑥 = 𝐴 → (((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
65ralbidv 3184 . . . 4 (𝑥 = 𝐴 → (∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘)) ↔ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
76elrab 3660 . . 3 (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))))
8 toponmax 21510 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
9 elpw2g 5223 . . . . 5 (𝑋𝐽 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
108, 9syl 17 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
1110anbi1d 631 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((𝐴 ∈ 𝒫 𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘))) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
127, 11syl5bb 285 . 2 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝑥𝑘) ∈ (𝐽t 𝑘))} ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
132, 12bitrd 281 1 (𝐽 ∈ (TopOn‘𝑋) → (𝐴 ∈ (𝑘Gen‘𝐽) ↔ (𝐴𝑋 ∧ ∀𝑘 ∈ 𝒫 𝑋((𝐽t 𝑘) ∈ Comp → (𝐴𝑘) ∈ (𝐽t 𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  {crab 3129  cin 3912  wss 3913  𝒫 cpw 4515  cfv 6331  (class class class)co 7133  t crest 16673  TopOnctopon 21494  Compccmp 21970  𝑘Genckgen 22117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ral 3130  df-rex 3131  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-iota 6290  df-fun 6333  df-fv 6339  df-ov 7136  df-top 21478  df-topon 21495  df-kgen 22118
This theorem is referenced by:  kgeni  22121  kgentopon  22122  kgenss  22127  kgenidm  22131  iskgen3  22133  kgen2ss  22139  kgencn  22140  kgencn3  22142  txkgen  22236
  Copyright terms: Public domain W3C validator