Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmlan2 Structured version   Visualization version   GIF version

Theorem reldmlan2 49596
Description: The domain of (𝑃 Lan 𝐸) is a relation. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
reldmlan2 Rel dom (𝑃 Lan 𝐸)

Proof of Theorem reldmlan2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5764 . . 3 Rel ∅
2 df-ov 7392 . . . . . . 7 (𝑃 Lan 𝐸) = ( Lan ‘⟨𝑃, 𝐸⟩)
3 id 22 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → ( Lan ‘⟨𝑃, 𝐸⟩) = ∅)
42, 3eqtrid 2777 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → (𝑃 Lan 𝐸) = ∅)
54dmeqd 5871 . . . . 5 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Lan 𝐸) = dom ∅)
6 dm0 5886 . . . . 5 dom ∅ = ∅
75, 6eqtrdi 2781 . . . 4 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Lan 𝐸) = ∅)
87releqd 5743 . . 3 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → (Rel dom (𝑃 Lan 𝐸) ↔ Rel ∅))
91, 8mpbiri 258 . 2 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → Rel dom (𝑃 Lan 𝐸))
10 eqid 2730 . . . 4 (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))
1110reldmmpo 7525 . . 3 Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))
12 fvfundmfvn0 6903 . . . . . . . . . 10 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨𝑃, 𝐸⟩ ∈ dom Lan ∧ Fun ( Lan ↾ {⟨𝑃, 𝐸⟩})))
1312simpld 494 . . . . . . . . 9 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ dom Lan )
14 lanfn 49588 . . . . . . . . . 10 Lan Fn ((V × V) × V)
1514fndmi 6624 . . . . . . . . 9 dom Lan = ((V × V) × V)
1613, 15eleqtrdi 2839 . . . . . . . 8 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5682 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝑃 ∈ (V × V))
18 1st2nd2 8009 . . . . . . . 8 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1916, 17, 183syl 18 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2019oveq1d 7404 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Lan 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸))
21 eqid 2730 . . . . . . 7 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2730 . . . . . . 7 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 fvexd 6875 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (1st𝑃) ∈ V)
24 fvexd 6875 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (2nd𝑃) ∈ V)
25 opelxp2 5683 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2616, 25syl 17 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝐸 ∈ V)
2721, 22, 23, 24, 26lanfval 49592 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
2820, 27eqtrd 2765 . . . . 5 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Lan 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
2928dmeqd 5871 . . . 4 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → dom (𝑃 Lan 𝐸) = dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
3029releqd 5743 . . 3 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (Rel dom (𝑃 Lan 𝐸) ↔ Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))))
3111, 30mpbiri 258 . 2 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → Rel dom (𝑃 Lan 𝐸))
329, 31pm2.61ine 3009 1 Rel dom (𝑃 Lan 𝐸)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  {csn 4591  cop 4597   × cxp 5638  dom cdm 5640  cres 5642  Rel wrel 5645  Fun wfun 6507  cfv 6513  (class class class)co 7389  cmpo 7391  1st c1st 7968  2nd c2nd 7969   Func cfunc 17822   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Lan clan 49584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-lan 49586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator