Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reldmlan2 Structured version   Visualization version   GIF version

Theorem reldmlan2 49728
Description: The domain of (𝑃 Lan 𝐸) is a relation. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
reldmlan2 Rel dom (𝑃 Lan 𝐸)

Proof of Theorem reldmlan2
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rel0 5738 . . 3 Rel ∅
2 df-ov 7349 . . . . . . 7 (𝑃 Lan 𝐸) = ( Lan ‘⟨𝑃, 𝐸⟩)
3 id 22 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → ( Lan ‘⟨𝑃, 𝐸⟩) = ∅)
42, 3eqtrid 2778 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → (𝑃 Lan 𝐸) = ∅)
54dmeqd 5844 . . . . 5 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Lan 𝐸) = dom ∅)
6 dm0 5859 . . . . 5 dom ∅ = ∅
75, 6eqtrdi 2782 . . . 4 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → dom (𝑃 Lan 𝐸) = ∅)
87releqd 5718 . . 3 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → (Rel dom (𝑃 Lan 𝐸) ↔ Rel ∅))
91, 8mpbiri 258 . 2 (( Lan ‘⟨𝑃, 𝐸⟩) = ∅ → Rel dom (𝑃 Lan 𝐸))
10 eqid 2731 . . . 4 (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))
1110reldmmpo 7480 . . 3 Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))
12 fvfundmfvn0 6862 . . . . . . . . . 10 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨𝑃, 𝐸⟩ ∈ dom Lan ∧ Fun ( Lan ↾ {⟨𝑃, 𝐸⟩})))
1312simpld 494 . . . . . . . . 9 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ dom Lan )
14 lanfn 49720 . . . . . . . . . 10 Lan Fn ((V × V) × V)
1514fndmi 6585 . . . . . . . . 9 dom Lan = ((V × V) × V)
1613, 15eleqtrdi 2841 . . . . . . . 8 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → ⟨𝑃, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5656 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝑃 ∈ (V × V))
18 1st2nd2 7960 . . . . . . . 8 (𝑃 ∈ (V × V) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
1916, 17, 183syl 18 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2019oveq1d 7361 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Lan 𝐸) = (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸))
21 eqid 2731 . . . . . . 7 ((2nd𝑃) FuncCat 𝐸) = ((2nd𝑃) FuncCat 𝐸)
22 eqid 2731 . . . . . . 7 ((1st𝑃) FuncCat 𝐸) = ((1st𝑃) FuncCat 𝐸)
23 fvexd 6837 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (1st𝑃) ∈ V)
24 fvexd 6837 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (2nd𝑃) ∈ V)
25 opelxp2 5657 . . . . . . . 8 (⟨𝑃, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2616, 25syl 17 . . . . . . 7 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → 𝐸 ∈ V)
2721, 22, 23, 24, 26lanfval 49724 . . . . . 6 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (⟨(1st𝑃), (2nd𝑃)⟩ Lan 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
2820, 27eqtrd 2766 . . . . 5 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (𝑃 Lan 𝐸) = (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
2928dmeqd 5844 . . . 4 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → dom (𝑃 Lan 𝐸) = dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥)))
3029releqd 5718 . . 3 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → (Rel dom (𝑃 Lan 𝐸) ↔ Rel dom (𝑓 ∈ ((1st𝑃) Func (2nd𝑃)), 𝑥 ∈ ((1st𝑃) Func 𝐸) ↦ ((⟨(2nd𝑃), 𝐸⟩ −∘F 𝑓)(((2nd𝑃) FuncCat 𝐸) UP ((1st𝑃) FuncCat 𝐸))𝑥))))
3111, 30mpbiri 258 . 2 (( Lan ‘⟨𝑃, 𝐸⟩) ≠ ∅ → Rel dom (𝑃 Lan 𝐸))
329, 31pm2.61ine 3011 1 Rel dom (𝑃 Lan 𝐸)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280  {csn 4573  cop 4579   × cxp 5612  dom cdm 5614  cres 5616  Rel wrel 5619  Fun wfun 6475  cfv 6481  (class class class)co 7346  cmpo 7348  1st c1st 7919  2nd c2nd 7920   Func cfunc 17761   FuncCat cfuc 17852   UP cup 49284   −∘F cprcof 49484   Lan clan 49716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-lan 49718
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator