Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanrcl Structured version   Visualization version   GIF version

Theorem lanrcl 49732
Description: Reverse closure for left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
lanrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem lanrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋))
2 ne0i 4288 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅)
3 eqid 2731 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2731 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7349 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ Lan 𝐸) = ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2736 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ ↔ ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7352 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7383 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2782 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = ∅)
1110necon3i 2960 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6862 . . . . . . . . 9 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Lan ∧ Fun ( Lan ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Lan )
14 lanfn 49720 . . . . . . . . 9 Lan Fn ((V × V) × V)
1514fndmi 6585 . . . . . . . 8 dom Lan = ((V × V) × V)
1613, 15eleqtrdi 2841 . . . . . . 7 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5656 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5656 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5657 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5657 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
243, 4, 19, 21, 23lanfval 49724 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)))
252, 24syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)))
2625oveqd 7363 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋))
271, 26eleqtrd 2833 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋))
28 eqid 2731 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))
2928elmpocl 7587 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3027, 29syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  c0 4280  {csn 4573  cop 4579   × cxp 5612  dom cdm 5614  cres 5616  Fun wfun 6475  cfv 6481  (class class class)co 7346  cmpo 7348   Func cfunc 17761   FuncCat cfuc 17852   UP cup 49284   −∘F cprcof 49484   Lan clan 49716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-lan 49718
This theorem is referenced by:  rellan  49734  islan  49736  lanrcl2  49743  lanrcl3  49744
  Copyright terms: Public domain W3C validator