Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lanrcl Structured version   Visualization version   GIF version

Theorem lanrcl 49600
Description: Reverse closure for left Kan extensions. (Contributed by Zhi Wang, 3-Nov-2025.)
Assertion
Ref Expression
lanrcl (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))

Proof of Theorem lanrcl
Dummy variables 𝑓 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋))
2 ne0i 4306 . . . . 5 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅)
3 eqid 2730 . . . . . 6 (𝐷 FuncCat 𝐸) = (𝐷 FuncCat 𝐸)
4 eqid 2730 . . . . . 6 (𝐶 FuncCat 𝐸) = (𝐶 FuncCat 𝐸)
5 df-ov 7392 . . . . . . . . . 10 (⟨𝐶, 𝐷⟩ Lan 𝐸) = ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩)
65eqeq1i 2735 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ ↔ ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅)
7 oveq 7395 . . . . . . . . . 10 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = (𝐹𝑋))
8 0ov 7426 . . . . . . . . . 10 (𝐹𝑋) = ∅
97, 8eqtrdi 2781 . . . . . . . . 9 ((⟨𝐶, 𝐷⟩ Lan 𝐸) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = ∅)
106, 9sylbir 235 . . . . . . . 8 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) = ∅ → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = ∅)
1110necon3i 2958 . . . . . . 7 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → ( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅)
12 fvfundmfvn0 6903 . . . . . . . . 9 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Lan ∧ Fun ( Lan ↾ {⟨⟨𝐶, 𝐷⟩, 𝐸⟩})))
1312simpld 494 . . . . . . . 8 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ dom Lan )
14 lanfn 49588 . . . . . . . . 9 Lan Fn ((V × V) × V)
1514fndmi 6624 . . . . . . . 8 dom Lan = ((V × V) × V)
1613, 15eleqtrdi 2839 . . . . . . 7 (( Lan ‘⟨⟨𝐶, 𝐷⟩, 𝐸⟩) ≠ ∅ → ⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V))
17 opelxp1 5682 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → ⟨𝐶, 𝐷⟩ ∈ (V × V))
18 opelxp1 5682 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐶 ∈ V)
1911, 16, 17, 184syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐶 ∈ V)
20 opelxp2 5683 . . . . . . 7 (⟨𝐶, 𝐷⟩ ∈ (V × V) → 𝐷 ∈ V)
2111, 16, 17, 204syl 19 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐷 ∈ V)
22 opelxp2 5683 . . . . . . 7 (⟨⟨𝐶, 𝐷⟩, 𝐸⟩ ∈ ((V × V) × V) → 𝐸 ∈ V)
2311, 16, 223syl 18 . . . . . 6 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → 𝐸 ∈ V)
243, 4, 19, 21, 23lanfval 49592 . . . . 5 ((𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) ≠ ∅ → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)))
252, 24syl 17 . . . 4 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (⟨𝐶, 𝐷⟩ Lan 𝐸) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)))
2625oveqd 7406 . . 3 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) = (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋))
271, 26eleqtrd 2831 . 2 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → 𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋))
28 eqid 2730 . . 3 (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥)) = (𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))
2928elmpocl 7632 . 2 (𝐿 ∈ (𝐹(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ (𝐶 Func 𝐸) ↦ ((⟨𝐷, 𝐸⟩ −∘F 𝑓)((𝐷 FuncCat 𝐸) UP (𝐶 FuncCat 𝐸))𝑥))𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
3027, 29syl 17 1 (𝐿 ∈ (𝐹(⟨𝐶, 𝐷⟩ Lan 𝐸)𝑋) → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (𝐶 Func 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4298  {csn 4591  cop 4597   × cxp 5638  dom cdm 5640  cres 5642  Fun wfun 6507  cfv 6513  (class class class)co 7389  cmpo 7391   Func cfunc 17822   FuncCat cfuc 17913   UP cup 49152   −∘F cprcof 49352   Lan clan 49584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-lan 49586
This theorem is referenced by:  rellan  49602  islan  49604  lanrcl2  49611  lanrcl3  49612
  Copyright terms: Public domain W3C validator