Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnv Structured version   Visualization version   GIF version

Theorem lautcnv 39264
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.)
Hypothesis
Ref Expression
lautcnv.i 𝐼 = (LAutβ€˜πΎ)
Assertion
Ref Expression
lautcnv ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ ◑𝐹 ∈ 𝐼)

Proof of Theorem lautcnv
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . 4 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 lautcnv.i . . . 4 𝐼 = (LAutβ€˜πΎ)
31, 2laut1o 39259 . . 3 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ 𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
4 f1ocnv 6845 . . 3 (𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) β†’ ◑𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
53, 4syl 17 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ ◑𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ))
6 eqid 2732 . . . 4 (leβ€˜πΎ) = (leβ€˜πΎ)
71, 6, 2lautcnvle 39263 . . 3 (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (π‘₯ ∈ (Baseβ€˜πΎ) ∧ 𝑦 ∈ (Baseβ€˜πΎ))) β†’ (π‘₯(leβ€˜πΎ)𝑦 ↔ (β—‘πΉβ€˜π‘₯)(leβ€˜πΎ)(β—‘πΉβ€˜π‘¦)))
87ralrimivva 3200 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ (β—‘πΉβ€˜π‘₯)(leβ€˜πΎ)(β—‘πΉβ€˜π‘¦)))
91, 6, 2islaut 39257 . . 3 (𝐾 ∈ 𝑉 β†’ (◑𝐹 ∈ 𝐼 ↔ (◑𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ (β—‘πΉβ€˜π‘₯)(leβ€˜πΎ)(β—‘πΉβ€˜π‘¦)))))
109adantr 481 . 2 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ (◑𝐹 ∈ 𝐼 ↔ (◑𝐹:(Baseβ€˜πΎ)–1-1-ontoβ†’(Baseβ€˜πΎ) ∧ βˆ€π‘₯ ∈ (Baseβ€˜πΎ)βˆ€π‘¦ ∈ (Baseβ€˜πΎ)(π‘₯(leβ€˜πΎ)𝑦 ↔ (β—‘πΉβ€˜π‘₯)(leβ€˜πΎ)(β—‘πΉβ€˜π‘¦)))))
115, 8, 10mpbir2and 711 1 ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) β†’ ◑𝐹 ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5148  β—‘ccnv 5675  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  Basecbs 17148  lecple 17208  LAutclaut 39159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-map 8824  df-laut 39163
This theorem is referenced by:  ldilcnv  39289
  Copyright terms: Public domain W3C validator