![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnv | Structured version Visualization version GIF version |
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
Ref | Expression |
---|---|
lautcnv.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
lautcnv | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | lautcnv.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
3 | 1, 2 | laut1o 39732 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
4 | f1ocnv 6854 | . . 3 ⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
6 | eqid 2725 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 1, 6, 2 | lautcnvle 39736 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
8 | 7 | ralrimivva 3190 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
9 | 1, 6, 2 | islaut 39730 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
10 | 9 | adantr 479 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
11 | 5, 8, 10 | mpbir2and 711 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5152 ◡ccnv 5680 –1-1-onto→wf1o 6552 ‘cfv 6553 Basecbs 17208 lecple 17268 LAutclaut 39632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5579 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7426 df-oprab 7427 df-mpo 7428 df-map 8856 df-laut 39636 |
This theorem is referenced by: ldilcnv 39762 |
Copyright terms: Public domain | W3C validator |