Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnv | Structured version Visualization version GIF version |
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
Ref | Expression |
---|---|
lautcnv.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
lautcnv | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
2 | lautcnv.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
3 | 1, 2 | laut1o 38078 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
4 | f1ocnv 6724 | . . 3 ⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | |
5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
6 | eqid 2739 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
7 | 1, 6, 2 | lautcnvle 38082 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
8 | 7 | ralrimivva 3116 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
9 | 1, 6, 2 | islaut 38076 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
10 | 9 | adantr 480 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
11 | 5, 8, 10 | mpbir2and 709 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 class class class wbr 5078 ◡ccnv 5587 –1-1-onto→wf1o 6429 ‘cfv 6430 Basecbs 16893 lecple 16950 LAutclaut 37978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-map 8591 df-laut 37982 |
This theorem is referenced by: ldilcnv 38108 |
Copyright terms: Public domain | W3C validator |