| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
| Ref | Expression |
|---|---|
| lautcnv.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| lautcnv | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 2 | lautcnv.i | . . . 4 ⊢ 𝐼 = (LAut‘𝐾) | |
| 3 | 1, 2 | laut1o 40079 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 4 | f1ocnv 6812 | . . 3 ⊢ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾)) |
| 6 | eqid 2729 | . . . 4 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 7 | 1, 6, 2 | lautcnvle 40083 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
| 8 | 7 | ralrimivva 3180 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))) |
| 9 | 1, 6, 2 | islaut 40077 | . . 3 ⊢ (𝐾 ∈ 𝑉 → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
| 10 | 9 | adantr 480 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → (◡𝐹 ∈ 𝐼 ↔ (◡𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (◡𝐹‘𝑥)(le‘𝐾)(◡𝐹‘𝑦))))) |
| 11 | 5, 8, 10 | mpbir2and 713 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝐹 ∈ 𝐼) → ◡𝐹 ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 class class class wbr 5107 ◡ccnv 5637 –1-1-onto→wf1o 6510 ‘cfv 6511 Basecbs 17179 lecple 17227 LAutclaut 39979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-map 8801 df-laut 39983 |
| This theorem is referenced by: ldilcnv 40109 |
| Copyright terms: Public domain | W3C validator |