Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnv Structured version   Visualization version   GIF version

Theorem lautcnv 40089
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.)
Hypothesis
Ref Expression
lautcnv.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcnv ((𝐾𝑉𝐹𝐼) → 𝐹𝐼)

Proof of Theorem lautcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 lautcnv.i . . . 4 𝐼 = (LAut‘𝐾)
31, 2laut1o 40084 . . 3 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
4 f1ocnv 6776 . . 3 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
53, 4syl 17 . 2 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
6 eqid 2729 . . . 4 (le‘𝐾) = (le‘𝐾)
71, 6, 2lautcnvle 40088 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))
87ralrimivva 3172 . 2 ((𝐾𝑉𝐹𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))
91, 6, 2islaut 40082 . . 3 (𝐾𝑉 → (𝐹𝐼 ↔ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
109adantr 480 . 2 ((𝐾𝑉𝐹𝐼) → (𝐹𝐼 ↔ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
115, 8, 10mpbir2and 713 1 ((𝐾𝑉𝐹𝐼) → 𝐹𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5092  ccnv 5618  1-1-ontowf1o 6481  cfv 6482  Basecbs 17120  lecple 17168  LAutclaut 39984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-laut 39988
This theorem is referenced by:  ldilcnv  40114
  Copyright terms: Public domain W3C validator