Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lautcnv Structured version   Visualization version   GIF version

Theorem lautcnv 38031
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.)
Hypothesis
Ref Expression
lautcnv.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
lautcnv ((𝐾𝑉𝐹𝐼) → 𝐹𝐼)

Proof of Theorem lautcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝐾) = (Base‘𝐾)
2 lautcnv.i . . . 4 𝐼 = (LAut‘𝐾)
31, 2laut1o 38026 . . 3 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
4 f1ocnv 6712 . . 3 (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
53, 4syl 17 . 2 ((𝐾𝑉𝐹𝐼) → 𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
6 eqid 2738 . . . 4 (le‘𝐾) = (le‘𝐾)
71, 6, 2lautcnvle 38030 . . 3 (((𝐾𝑉𝐹𝐼) ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾))) → (𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))
87ralrimivva 3114 . 2 ((𝐾𝑉𝐹𝐼) → ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))
91, 6, 2islaut 38024 . . 3 (𝐾𝑉 → (𝐹𝐼 ↔ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
109adantr 480 . 2 ((𝐾𝑉𝐹𝐼) → (𝐹𝐼 ↔ (𝐹:(Base‘𝐾)–1-1-onto→(Base‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)∀𝑦 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑦 ↔ (𝐹𝑥)(le‘𝐾)(𝐹𝑦)))))
115, 8, 10mpbir2and 709 1 ((𝐾𝑉𝐹𝐼) → 𝐹𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063   class class class wbr 5070  ccnv 5579  1-1-ontowf1o 6417  cfv 6418  Basecbs 16840  lecple 16895  LAutclaut 37926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-laut 37930
This theorem is referenced by:  ldilcnv  38056
  Copyright terms: Public domain W3C validator