![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lautcnv | Structured version Visualization version GIF version |
Description: The converse of a lattice automorphism is a lattice automorphism. (Contributed by NM, 10-May-2013.) |
Ref | Expression |
---|---|
lautcnv.i | β’ πΌ = (LAutβπΎ) |
Ref | Expression |
---|---|
lautcnv | β’ ((πΎ β π β§ πΉ β πΌ) β β‘πΉ β πΌ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ (BaseβπΎ) = (BaseβπΎ) | |
2 | lautcnv.i | . . . 4 β’ πΌ = (LAutβπΎ) | |
3 | 1, 2 | laut1o 39259 | . . 3 β’ ((πΎ β π β§ πΉ β πΌ) β πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ)) |
4 | f1ocnv 6845 | . . 3 β’ (πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ) β β‘πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ)) | |
5 | 3, 4 | syl 17 | . 2 β’ ((πΎ β π β§ πΉ β πΌ) β β‘πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ)) |
6 | eqid 2732 | . . . 4 β’ (leβπΎ) = (leβπΎ) | |
7 | 1, 6, 2 | lautcnvle 39263 | . . 3 β’ (((πΎ β π β§ πΉ β πΌ) β§ (π₯ β (BaseβπΎ) β§ π¦ β (BaseβπΎ))) β (π₯(leβπΎ)π¦ β (β‘πΉβπ₯)(leβπΎ)(β‘πΉβπ¦))) |
8 | 7 | ralrimivva 3200 | . 2 β’ ((πΎ β π β§ πΉ β πΌ) β βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)(π₯(leβπΎ)π¦ β (β‘πΉβπ₯)(leβπΎ)(β‘πΉβπ¦))) |
9 | 1, 6, 2 | islaut 39257 | . . 3 β’ (πΎ β π β (β‘πΉ β πΌ β (β‘πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ) β§ βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)(π₯(leβπΎ)π¦ β (β‘πΉβπ₯)(leβπΎ)(β‘πΉβπ¦))))) |
10 | 9 | adantr 481 | . 2 β’ ((πΎ β π β§ πΉ β πΌ) β (β‘πΉ β πΌ β (β‘πΉ:(BaseβπΎ)β1-1-ontoβ(BaseβπΎ) β§ βπ₯ β (BaseβπΎ)βπ¦ β (BaseβπΎ)(π₯(leβπΎ)π¦ β (β‘πΉβπ₯)(leβπΎ)(β‘πΉβπ¦))))) |
11 | 5, 8, 10 | mpbir2and 711 | 1 β’ ((πΎ β π β§ πΉ β πΌ) β β‘πΉ β πΌ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 class class class wbr 5148 β‘ccnv 5675 β1-1-ontoβwf1o 6542 βcfv 6543 Basecbs 17148 lecple 17208 LAutclaut 39159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-map 8824 df-laut 39163 |
This theorem is referenced by: ldilcnv 39289 |
Copyright terms: Public domain | W3C validator |