| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0i | Structured version Visualization version GIF version | ||
| Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
| Ref | Expression |
|---|---|
| lvecdim0i | ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . . . 7 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 2 | 1 | lbsex 21111 | . . . . . 6 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
| 3 | n0 4302 | . . . . . 6 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 7 | 1 | dimval 33685 | . . . . . . . 8 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
| 8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
| 9 | simplr 768 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0) | |
| 10 | 8, 9 | eqtr3d 2770 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0) |
| 11 | hasheq0 14277 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅)) | |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅) |
| 13 | 6, 10, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
| 14 | 13, 6 | eqeltrrd 2834 | . . . 4 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
| 15 | 5, 14 | exlimddv 1936 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉)) |
| 16 | eqid 2733 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 17 | eqid 2733 | . . . 4 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 18 | 16, 1, 17 | lbssp 21022 | . . 3 ⊢ (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
| 19 | 15, 18 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
| 20 | lveclmod 21049 | . . . 4 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod) |
| 22 | lvecdim0.1 | . . . 4 ⊢ 0 = (0g‘𝑉) | |
| 23 | 22, 17 | lsp0 20951 | . . 3 ⊢ (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 }) |
| 24 | 21, 23 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 }) |
| 25 | 19, 24 | eqtr3d 2770 | 1 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2929 ∅c0 4282 {csn 4577 ‘cfv 6489 0cc0 11017 ♯chash 14244 Basecbs 17127 0gc0g 17350 LModclmod 20802 LSpanclspn 20913 LBasisclbs 21017 LVecclvec 21045 dimcldim 33683 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-reg 9489 ax-inf2 9542 ax-ac2 10365 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-rpss 7665 df-om 7806 df-1st 7930 df-2nd 7931 df-tpos 8165 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-oadd 8398 df-er 8631 df-map 8761 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-oi 9407 df-r1 9668 df-rank 9669 df-dju 9805 df-card 9843 df-acn 9846 df-ac 10018 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-xnn0 12466 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-tset 17187 df-ple 17188 df-ocomp 17189 df-0g 17352 df-mre 17496 df-mrc 17497 df-mri 17498 df-acs 17499 df-proset 18208 df-drs 18209 df-poset 18227 df-ipo 18442 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-ring 20161 df-oppr 20264 df-dvdsr 20284 df-unit 20285 df-invr 20315 df-drng 20655 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lbs 21018 df-lvec 21046 df-dim 33684 |
| This theorem is referenced by: lvecdim0 33691 |
| Copyright terms: Public domain | W3C validator |