| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0i | Structured version Visualization version GIF version | ||
| Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
| Ref | Expression |
|---|---|
| lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
| Ref | Expression |
|---|---|
| lvecdim0i | ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . 7 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
| 2 | 1 | lbsex 21097 | . . . . . 6 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
| 3 | n0 4298 | . . . . . 6 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
| 4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
| 6 | simpr 484 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
| 7 | 1 | dimval 33605 | . . . . . . . 8 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
| 8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
| 9 | simplr 768 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0) | |
| 10 | 8, 9 | eqtr3d 2768 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0) |
| 11 | hasheq0 14265 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅)) | |
| 12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅) |
| 13 | 6, 10, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
| 14 | 13, 6 | eqeltrrd 2832 | . . . 4 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
| 15 | 5, 14 | exlimddv 1936 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉)) |
| 16 | eqid 2731 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
| 17 | eqid 2731 | . . . 4 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
| 18 | 16, 1, 17 | lbssp 21008 | . . 3 ⊢ (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
| 19 | 15, 18 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
| 20 | lveclmod 21035 | . . . 4 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod) |
| 22 | lvecdim0.1 | . . . 4 ⊢ 0 = (0g‘𝑉) | |
| 23 | 22, 17 | lsp0 20937 | . . 3 ⊢ (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 }) |
| 24 | 21, 23 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 }) |
| 25 | 19, 24 | eqtr3d 2768 | 1 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 {csn 4571 ‘cfv 6476 0cc0 11001 ♯chash 14232 Basecbs 17115 0gc0g 17338 LModclmod 20788 LSpanclspn 20899 LBasisclbs 21003 LVecclvec 21031 dimcldim 33603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-reg 9473 ax-inf2 9526 ax-ac2 10349 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-rpss 7651 df-om 7792 df-1st 7916 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-oi 9391 df-r1 9652 df-rank 9653 df-dju 9789 df-card 9827 df-acn 9830 df-ac 10002 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-xnn0 12450 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-tset 17175 df-ple 17176 df-ocomp 17177 df-0g 17340 df-mre 17483 df-mrc 17484 df-mri 17485 df-acs 17486 df-proset 18195 df-drs 18196 df-poset 18214 df-ipo 18429 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-oppr 20250 df-dvdsr 20270 df-unit 20271 df-invr 20301 df-drng 20641 df-lmod 20790 df-lss 20860 df-lsp 20900 df-lbs 21004 df-lvec 21032 df-dim 33604 |
| This theorem is referenced by: lvecdim0 33611 |
| Copyright terms: Public domain | W3C validator |