Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecdim0i Structured version   Visualization version   GIF version

Theorem lvecdim0i 31096
 Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.)
Hypothesis
Ref Expression
lvecdim0.1 0 = (0g𝑉)
Assertion
Ref Expression
lvecdim0i ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })

Proof of Theorem lvecdim0i
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2801 . . . . . . 7 (LBasis‘𝑉) = (LBasis‘𝑉)
21lbsex 19934 . . . . . 6 (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅)
3 n0 4263 . . . . . 6 ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
42, 3sylib 221 . . . . 5 (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
54adantr 484 . . . 4 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
6 simpr 488 . . . . . 6 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉))
71dimval 31093 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏))
87adantlr 714 . . . . . . 7 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏))
9 simplr 768 . . . . . . 7 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0)
108, 9eqtr3d 2838 . . . . . 6 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0)
11 hasheq0 13724 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅))
1211biimpa 480 . . . . . 6 ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅)
136, 10, 12syl2anc 587 . . . . 5 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅)
1413, 6eqeltrrd 2894 . . . 4 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉))
155, 14exlimddv 1936 . . 3 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉))
16 eqid 2801 . . . 4 (Base‘𝑉) = (Base‘𝑉)
17 eqid 2801 . . . 4 (LSpan‘𝑉) = (LSpan‘𝑉)
1816, 1, 17lbssp 19848 . . 3 (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉))
1915, 18syl 17 . 2 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉))
20 lveclmod 19875 . . . 4 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2120adantr 484 . . 3 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod)
22 lvecdim0.1 . . . 4 0 = (0g𝑉)
2322, 17lsp0 19778 . . 3 (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 })
2421, 23syl 17 . 2 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 })
2519, 24eqtr3d 2838 1 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2112   ≠ wne 2990  ∅c0 4246  {csn 4528  ‘cfv 6328  0cc0 10530  ♯chash 13690  Basecbs 16479  0gc0g 16709  LModclmod 19631  LSpanclspn 19740  LBasisclbs 19843  LVecclvec 19871  dimcldim 31091 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-reg 9044  ax-inf2 9092  ax-ac2 9878  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-rpss 7433  df-om 7565  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-oi 8962  df-r1 9181  df-rank 9182  df-dju 9318  df-card 9356  df-acn 9359  df-ac 9531  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12890  df-hash 13691  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-mulr 16575  df-tset 16580  df-ple 16581  df-ocomp 16582  df-0g 16711  df-mre 16853  df-mrc 16854  df-mri 16855  df-acs 16856  df-proset 17534  df-drs 17535  df-poset 17552  df-ipo 17758  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-submnd 17953  df-grp 18102  df-minusg 18103  df-sbg 18104  df-subg 18272  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-ring 19296  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-drng 19501  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lbs 19844  df-lvec 19872  df-dim 31092 This theorem is referenced by:  lvecdim0  31097
 Copyright terms: Public domain W3C validator