Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lvecdim0i Structured version   Visualization version   GIF version

Theorem lvecdim0i 33591
Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.)
Hypothesis
Ref Expression
lvecdim0.1 0 = (0g𝑉)
Assertion
Ref Expression
lvecdim0i ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })

Proof of Theorem lvecdim0i
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . . . . 7 (LBasis‘𝑉) = (LBasis‘𝑉)
21lbsex 21135 . . . . . 6 (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅)
3 n0 4333 . . . . . 6 ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
42, 3sylib 218 . . . . 5 (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
54adantr 480 . . . 4 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉))
6 simpr 484 . . . . . 6 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉))
71dimval 33586 . . . . . . . 8 ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏))
87adantlr 715 . . . . . . 7 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏))
9 simplr 768 . . . . . . 7 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0)
108, 9eqtr3d 2771 . . . . . 6 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0)
11 hasheq0 14384 . . . . . . 7 (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅))
1211biimpa 476 . . . . . 6 ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅)
136, 10, 12syl2anc 584 . . . . 5 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅)
1413, 6eqeltrrd 2834 . . . 4 (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉))
155, 14exlimddv 1934 . . 3 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉))
16 eqid 2734 . . . 4 (Base‘𝑉) = (Base‘𝑉)
17 eqid 2734 . . . 4 (LSpan‘𝑉) = (LSpan‘𝑉)
1816, 1, 17lbssp 21046 . . 3 (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉))
1915, 18syl 17 . 2 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉))
20 lveclmod 21073 . . . 4 (𝑉 ∈ LVec → 𝑉 ∈ LMod)
2120adantr 480 . . 3 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod)
22 lvecdim0.1 . . . 4 0 = (0g𝑉)
2322, 17lsp0 20975 . . 3 (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 })
2421, 23syl 17 . 2 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 })
2519, 24eqtr3d 2771 1 ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 })
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wne 2931  c0 4313  {csn 4606  cfv 6541  0cc0 11137  chash 14351  Basecbs 17229  0gc0g 17455  LModclmod 20826  LSpanclspn 20937  LBasisclbs 21041  LVecclvec 21069  dimcldim 33584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-rpss 7725  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-oi 9532  df-r1 9786  df-rank 9787  df-dju 9923  df-card 9961  df-acn 9964  df-ac 10138  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-xnn0 12583  df-z 12597  df-dec 12717  df-uz 12861  df-fz 13530  df-hash 14352  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-tset 17292  df-ple 17293  df-ocomp 17294  df-0g 17457  df-mre 17600  df-mrc 17601  df-mri 17602  df-acs 17603  df-proset 18310  df-drs 18311  df-poset 18329  df-ipo 18542  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20325  df-unit 20326  df-invr 20356  df-drng 20699  df-lmod 20828  df-lss 20898  df-lsp 20938  df-lbs 21042  df-lvec 21070  df-dim 33585
This theorem is referenced by:  lvecdim0  33592
  Copyright terms: Public domain W3C validator