![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0i | Structured version Visualization version GIF version |
Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
Ref | Expression |
---|---|
lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
Ref | Expression |
---|---|
lvecdim0i | ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . . 7 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
2 | 1 | lbsex 21192 | . . . . . 6 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
3 | n0 4376 | . . . . . 6 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
7 | 1 | dimval 33615 | . . . . . . . 8 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
8 | 7 | adantlr 714 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
9 | simplr 768 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0) | |
10 | 8, 9 | eqtr3d 2782 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0) |
11 | hasheq0 14414 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅)) | |
12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅) |
13 | 6, 10, 12 | syl2anc 583 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
14 | 13, 6 | eqeltrrd 2845 | . . . 4 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
15 | 5, 14 | exlimddv 1934 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉)) |
16 | eqid 2740 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
17 | eqid 2740 | . . . 4 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
18 | 16, 1, 17 | lbssp 21103 | . . 3 ⊢ (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
19 | 15, 18 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
20 | lveclmod 21130 | . . . 4 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod) |
22 | lvecdim0.1 | . . . 4 ⊢ 0 = (0g‘𝑉) | |
23 | 22, 17 | lsp0 21032 | . . 3 ⊢ (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 }) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 }) |
25 | 19, 24 | eqtr3d 2782 | 1 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {csn 4648 ‘cfv 6575 0cc0 11186 ♯chash 14381 Basecbs 17260 0gc0g 17501 LModclmod 20882 LSpanclspn 20994 LBasisclbs 21098 LVecclvec 21126 dimcldim 33613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-reg 9663 ax-inf2 9712 ax-ac2 10534 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-isom 6584 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-rpss 7760 df-om 7906 df-1st 8032 df-2nd 8033 df-tpos 8269 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-2o 8525 df-oadd 8528 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-oi 9581 df-r1 9835 df-rank 9836 df-dju 9972 df-card 10010 df-acn 10013 df-ac 10187 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-xnn0 12628 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-hash 14382 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-tset 17332 df-ple 17333 df-ocomp 17334 df-0g 17503 df-mre 17646 df-mrc 17647 df-mri 17648 df-acs 17649 df-proset 18367 df-drs 18368 df-poset 18385 df-ipo 18600 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-subg 19165 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-oppr 20362 df-dvdsr 20385 df-unit 20386 df-invr 20416 df-drng 20755 df-lmod 20884 df-lss 20955 df-lsp 20995 df-lbs 21099 df-lvec 21127 df-dim 33614 |
This theorem is referenced by: lvecdim0 33621 |
Copyright terms: Public domain | W3C validator |