![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lvecdim0i | Structured version Visualization version GIF version |
Description: A vector space of dimension zero is reduced to its identity element. (Contributed by Thierry Arnoux, 31-Jul-2023.) |
Ref | Expression |
---|---|
lvecdim0.1 | ⊢ 0 = (0g‘𝑉) |
Ref | Expression |
---|---|
lvecdim0i | ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . . . . . 7 ⊢ (LBasis‘𝑉) = (LBasis‘𝑉) | |
2 | 1 | lbsex 21194 | . . . . . 6 ⊢ (𝑉 ∈ LVec → (LBasis‘𝑉) ≠ ∅) |
3 | n0 4362 | . . . . . 6 ⊢ ((LBasis‘𝑉) ≠ ∅ ↔ ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) | |
4 | 2, 3 | sylib 218 | . . . . 5 ⊢ (𝑉 ∈ LVec → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∃𝑏 𝑏 ∈ (LBasis‘𝑉)) |
6 | simpr 484 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 ∈ (LBasis‘𝑉)) | |
7 | 1 | dimval 33660 | . . . . . . . 8 ⊢ ((𝑉 ∈ LVec ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
8 | 7 | adantlr 715 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = (♯‘𝑏)) |
9 | simplr 769 | . . . . . . 7 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (dim‘𝑉) = 0) | |
10 | 8, 9 | eqtr3d 2779 | . . . . . 6 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → (♯‘𝑏) = 0) |
11 | hasheq0 14408 | . . . . . . 7 ⊢ (𝑏 ∈ (LBasis‘𝑉) → ((♯‘𝑏) = 0 ↔ 𝑏 = ∅)) | |
12 | 11 | biimpa 476 | . . . . . 6 ⊢ ((𝑏 ∈ (LBasis‘𝑉) ∧ (♯‘𝑏) = 0) → 𝑏 = ∅) |
13 | 6, 10, 12 | syl2anc 584 | . . . . 5 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → 𝑏 = ∅) |
14 | 13, 6 | eqeltrrd 2842 | . . . 4 ⊢ (((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) ∧ 𝑏 ∈ (LBasis‘𝑉)) → ∅ ∈ (LBasis‘𝑉)) |
15 | 5, 14 | exlimddv 1935 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ∅ ∈ (LBasis‘𝑉)) |
16 | eqid 2737 | . . . 4 ⊢ (Base‘𝑉) = (Base‘𝑉) | |
17 | eqid 2737 | . . . 4 ⊢ (LSpan‘𝑉) = (LSpan‘𝑉) | |
18 | 16, 1, 17 | lbssp 21105 | . . 3 ⊢ (∅ ∈ (LBasis‘𝑉) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
19 | 15, 18 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = (Base‘𝑉)) |
20 | lveclmod 21132 | . . . 4 ⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) | |
21 | 20 | adantr 480 | . . 3 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → 𝑉 ∈ LMod) |
22 | lvecdim0.1 | . . . 4 ⊢ 0 = (0g‘𝑉) | |
23 | 22, 17 | lsp0 21034 | . . 3 ⊢ (𝑉 ∈ LMod → ((LSpan‘𝑉)‘∅) = { 0 }) |
24 | 21, 23 | syl 17 | . 2 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → ((LSpan‘𝑉)‘∅) = { 0 }) |
25 | 19, 24 | eqtr3d 2779 | 1 ⊢ ((𝑉 ∈ LVec ∧ (dim‘𝑉) = 0) → (Base‘𝑉) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2108 ≠ wne 2940 ∅c0 4342 {csn 4634 ‘cfv 6569 0cc0 11162 ♯chash 14375 Basecbs 17254 0gc0g 17495 LModclmod 20884 LSpanclspn 20996 LBasisclbs 21100 LVecclvec 21128 dimcldim 33658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-reg 9639 ax-inf2 9688 ax-ac2 10510 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-rpss 7749 df-om 7895 df-1st 8022 df-2nd 8023 df-tpos 8259 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-2o 8515 df-oadd 8518 df-er 8753 df-map 8876 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-oi 9557 df-r1 9811 df-rank 9812 df-dju 9948 df-card 9986 df-acn 9989 df-ac 10163 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-xnn0 12607 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-hash 14376 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-tset 17326 df-ple 17327 df-ocomp 17328 df-0g 17497 df-mre 17640 df-mrc 17641 df-mri 17642 df-acs 17643 df-proset 18361 df-drs 18362 df-poset 18380 df-ipo 18595 df-mgm 18675 df-sgrp 18754 df-mnd 18770 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-drng 20757 df-lmod 20886 df-lss 20957 df-lsp 20997 df-lbs 21101 df-lvec 21129 df-dim 33659 |
This theorem is referenced by: lvecdim0 33666 |
Copyright terms: Public domain | W3C validator |