MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 20759
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Baseβ€˜π‘Š)
islbs2.j 𝐽 = (LBasisβ€˜π‘Š)
islbs2.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
islbs2 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑁   π‘₯,𝑉   π‘₯,π‘Š   π‘₯,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
2 islbs2.j . . . . 5 𝐽 = (LBasisβ€˜π‘Š)
31, 2lbsss 20680 . . . 4 (𝐡 ∈ 𝐽 β†’ 𝐡 βŠ† 𝑉)
43adantl 482 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ 𝐡 βŠ† 𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpanβ€˜π‘Š)
61, 2, 5lbssp 20682 . . . 4 (𝐡 ∈ 𝐽 β†’ (π‘β€˜π΅) = 𝑉)
76adantl 482 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (π‘β€˜π΅) = 𝑉)
8 lveclmod 20709 . . . . . . 7 (π‘Š ∈ LVec β†’ π‘Š ∈ LMod)
9 eqid 2732 . . . . . . . . 9 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
109lvecdrng 20708 . . . . . . . 8 (π‘Š ∈ LVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
11 eqid 2732 . . . . . . . . 9 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
12 eqid 2732 . . . . . . . . 9 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
1311, 12drngunz 20326 . . . . . . . 8 ((Scalarβ€˜π‘Š) ∈ DivRing β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
1410, 13syl 17 . . . . . . 7 (π‘Š ∈ LVec β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
158, 14jca 512 . . . . . 6 (π‘Š ∈ LVec β†’ (π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
162, 5, 9, 12, 11lbsind2 20684 . . . . . 6 (((π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1715, 16syl3an1 1163 . . . . 5 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
18173expa 1118 . . . 4 (((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1918ralrimiva 3146 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
204, 7, 193jca 1128 . 2 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
21 simpr1 1194 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 βŠ† 𝑉)
22 simpr2 1195 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (π‘β€˜π΅) = 𝑉)
23 id 22 . . . . . . . 8 (π‘₯ = 𝑦 β†’ π‘₯ = 𝑦)
24 sneq 4637 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
2524difeq2d 4121 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝑦}))
2625fveq2d 6892 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘β€˜(𝐡 βˆ– {π‘₯})) = (π‘β€˜(𝐡 βˆ– {𝑦})))
2723, 26eleq12d 2827 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
2827notbid 317 . . . . . 6 (π‘₯ = 𝑦 β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
29 simplr3 1217 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
30 simprl 769 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝐡)
3128, 29, 30rspcdva 3613 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
32 simpll 765 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LVec)
33 simprr 771 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))
34 eldifsn 4789 . . . . . . . . 9 (𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) ↔ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3533, 34sylib 217 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3621adantr 481 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝐡 βŠ† 𝑉)
3736, 30sseldd 3982 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝑉)
38 eqid 2732 . . . . . . . . 9 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
39 eqid 2732 . . . . . . . . 9 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
401, 9, 38, 39, 11, 5lspsnvs 20719 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝑦 ∈ 𝑉) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4132, 35, 37, 40syl3anc 1371 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4241sseq1d 4012 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
43 eqid 2732 . . . . . . 7 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
448adantr 481 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ π‘Š ∈ LMod)
4544adantr 481 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LMod)
4636ssdifssd 4141 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝐡 βˆ– {𝑦}) βŠ† 𝑉)
471, 43, 5lspcl 20579 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝐡 βˆ– {𝑦}) βŠ† 𝑉) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4845, 46, 47syl2anc 584 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4935simpld 495 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
501, 9, 38, 39lmodvscl 20481 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑉) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1371 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51lspsnel5 20598 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
531, 43, 5, 45, 48, 37lspsnel5 20598 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
5442, 52, 533bitr4d 310 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
5531, 54mtbird 324 . . . 4 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
5655ralrimivva 3200 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 20679 . . . 4 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5857adantr 481 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5921, 22, 56, 58mpbir3and 1342 . 2 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 ∈ 𝐽)
6020, 59impbida 799 1 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆ– cdif 3944   βŠ† wss 3947  {csn 4627  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  1rcur 19998  DivRingcdr 20307  LModclmod 20463  LSubSpclss 20534  LSpanclspn 20574  LBasisclbs 20677  LVecclvec 20705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mgp 19982  df-ur 19999  df-ring 20051  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-invr 20194  df-drng 20309  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lbs 20678  df-lvec 20706
This theorem is referenced by:  islbs3  20760  lbsacsbs  20761  lbsextlem4  20766  lbslsat  32689
  Copyright terms: Public domain W3C validator