MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 20057
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs2 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑉   𝑥,𝑊   𝑥,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 19980 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 485 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 19982 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 485 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 20009 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
9 eqid 2739 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
109lvecdrng 20008 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
11 eqid 2739 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 eqid 2739 . . . . . . . . 9 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1311, 12drngunz 19648 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
1410, 13syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
158, 14jca 515 . . . . . 6 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
162, 5, 9, 12, 11lbsind2 19984 . . . . . 6 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1715, 16syl3an1 1164 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
18173expa 1119 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1918ralrimiva 3097 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
204, 7, 193jca 1129 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
21 simpr1 1195 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝑉)
22 simpr2 1196 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
23 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
24 sneq 4536 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524difeq2d 4023 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
2625fveq2d 6690 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑦})))
2723, 26eleq12d 2828 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
2827notbid 321 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
29 simplr3 1218 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
30 simprl 771 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝐵)
3128, 29, 30rspcdva 3531 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})))
32 simpll 767 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LVec)
33 simprr 773 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
34 eldifsn 4685 . . . . . . . . 9 (𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3533, 34sylib 221 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3621adantr 484 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐵𝑉)
3736, 30sseldd 3888 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝑉)
38 eqid 2739 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
39 eqid 2739 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
401, 9, 38, 39, 11, 5lspsnvs 20017 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑦𝑉) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4132, 35, 37, 40syl3anc 1372 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4241sseq1d 3918 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
43 eqid 2739 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
448adantr 484 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
4544adantr 484 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
4636ssdifssd 4043 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐵 ∖ {𝑦}) ⊆ 𝑉)
471, 43, 5lspcl 19879 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑦}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4845, 46, 47syl2anc 587 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4935simpld 498 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ (Base‘(Scalar‘𝑊)))
501, 9, 38, 39lmodvscl 19782 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1372 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51lspsnel5 19898 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
531, 43, 5, 45, 48, 37lspsnel5 19898 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
5442, 52, 533bitr4d 314 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
5531, 54mtbird 328 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
5655ralrimivva 3104 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 19979 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5857adantr 484 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5921, 22, 56, 58mpbir3and 1343 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝐽)
6020, 59impbida 801 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  wral 3054  cdif 3850  wss 3853  {csn 4526  cfv 6349  (class class class)co 7182  Basecbs 16598  Scalarcsca 16683   ·𝑠 cvsca 16684  0gc0g 16828  1rcur 19382  DivRingcdr 19633  LModclmod 19765  LSubSpclss 19834  LSpanclspn 19874  LBasisclbs 19977  LVecclvec 20005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7491  ax-cnex 10683  ax-resscn 10684  ax-1cn 10685  ax-icn 10686  ax-addcl 10687  ax-addrcl 10688  ax-mulcl 10689  ax-mulrcl 10690  ax-mulcom 10691  ax-addass 10692  ax-mulass 10693  ax-distr 10694  ax-i2m1 10695  ax-1ne0 10696  ax-1rid 10697  ax-rnegex 10698  ax-rrecex 10699  ax-cnre 10700  ax-pre-lttri 10701  ax-pre-lttrn 10702  ax-pre-ltadd 10703  ax-pre-mulgt0 10704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6185  df-on 6186  df-lim 6187  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-oprab 7186  df-mpo 7187  df-om 7612  df-1st 7726  df-2nd 7727  df-tpos 7933  df-wrecs 7988  df-recs 8049  df-rdg 8087  df-er 8332  df-en 8568  df-dom 8569  df-sdom 8570  df-pnf 10767  df-mnf 10768  df-xr 10769  df-ltxr 10770  df-le 10771  df-sub 10962  df-neg 10963  df-nn 11729  df-2 11791  df-3 11792  df-ndx 16601  df-slot 16602  df-base 16604  df-sets 16605  df-ress 16606  df-plusg 16693  df-mulr 16694  df-0g 16830  df-mgm 17980  df-sgrp 18029  df-mnd 18040  df-grp 18234  df-minusg 18235  df-sbg 18236  df-mgp 19371  df-ur 19383  df-ring 19430  df-oppr 19507  df-dvdsr 19525  df-unit 19526  df-invr 19556  df-drng 19635  df-lmod 19767  df-lss 19835  df-lsp 19875  df-lbs 19978  df-lvec 20006
This theorem is referenced by:  islbs3  20058  lbsacsbs  20059  lbsextlem4  20064  lbslsat  31283
  Copyright terms: Public domain W3C validator