MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 21174
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs2 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑉   𝑥,𝑊   𝑥,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 21094 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 21096 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 21123 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
9 eqid 2735 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
109lvecdrng 21122 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
11 eqid 2735 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 eqid 2735 . . . . . . . . 9 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1311, 12drngunz 20764 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
1410, 13syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
158, 14jca 511 . . . . . 6 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
162, 5, 9, 12, 11lbsind2 21098 . . . . . 6 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1715, 16syl3an1 1162 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
18173expa 1117 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1918ralrimiva 3144 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
204, 7, 193jca 1127 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
21 simpr1 1193 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝑉)
22 simpr2 1194 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
23 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
24 sneq 4641 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524difeq2d 4136 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
2625fveq2d 6911 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑦})))
2723, 26eleq12d 2833 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
2827notbid 318 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
29 simplr3 1216 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
30 simprl 771 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝐵)
3128, 29, 30rspcdva 3623 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})))
32 simpll 767 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LVec)
33 simprr 773 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
34 eldifsn 4791 . . . . . . . . 9 (𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3533, 34sylib 218 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3621adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐵𝑉)
3736, 30sseldd 3996 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝑉)
38 eqid 2735 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
39 eqid 2735 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
401, 9, 38, 39, 11, 5lspsnvs 21134 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑦𝑉) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4132, 35, 37, 40syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4241sseq1d 4027 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
43 eqid 2735 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
448adantr 480 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
4544adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
4636ssdifssd 4157 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐵 ∖ {𝑦}) ⊆ 𝑉)
471, 43, 5lspcl 20992 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑦}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4845, 46, 47syl2anc 584 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4935simpld 494 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ (Base‘(Scalar‘𝑊)))
501, 9, 38, 39lmodvscl 20893 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1370 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51ellspsn5b 21011 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
531, 43, 5, 45, 48, 37ellspsn5b 21011 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
5442, 52, 533bitr4d 311 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
5531, 54mtbird 325 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
5655ralrimivva 3200 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 21093 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5857adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5921, 22, 56, 58mpbir3and 1341 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝐽)
6020, 59impbida 801 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  cdif 3960  wss 3963  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  1rcur 20199  DivRingcdr 20746  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LBasisclbs 21091  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lbs 21092  df-lvec 21120
This theorem is referenced by:  islbs3  21175  lbsacsbs  21176  lbsextlem4  21181  lbslsat  33644
  Copyright terms: Public domain W3C validator