MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 21156
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs2 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑉   𝑥,𝑊   𝑥,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 21076 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 21078 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 21105 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
9 eqid 2737 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
109lvecdrng 21104 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
11 eqid 2737 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 eqid 2737 . . . . . . . . 9 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1311, 12drngunz 20747 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
1410, 13syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
158, 14jca 511 . . . . . 6 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
162, 5, 9, 12, 11lbsind2 21080 . . . . . 6 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1715, 16syl3an1 1164 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
18173expa 1119 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1918ralrimiva 3146 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
204, 7, 193jca 1129 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
21 simpr1 1195 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝑉)
22 simpr2 1196 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
23 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
24 sneq 4636 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524difeq2d 4126 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
2625fveq2d 6910 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑦})))
2723, 26eleq12d 2835 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
2827notbid 318 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
29 simplr3 1218 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
30 simprl 771 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝐵)
3128, 29, 30rspcdva 3623 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})))
32 simpll 767 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LVec)
33 simprr 773 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
34 eldifsn 4786 . . . . . . . . 9 (𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3533, 34sylib 218 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3621adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐵𝑉)
3736, 30sseldd 3984 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝑉)
38 eqid 2737 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
39 eqid 2737 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
401, 9, 38, 39, 11, 5lspsnvs 21116 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑦𝑉) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4132, 35, 37, 40syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4241sseq1d 4015 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
43 eqid 2737 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
448adantr 480 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
4544adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
4636ssdifssd 4147 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐵 ∖ {𝑦}) ⊆ 𝑉)
471, 43, 5lspcl 20974 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑦}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4845, 46, 47syl2anc 584 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4935simpld 494 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ (Base‘(Scalar‘𝑊)))
501, 9, 38, 39lmodvscl 20876 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51ellspsn5b 20993 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
531, 43, 5, 45, 48, 37ellspsn5b 20993 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
5442, 52, 533bitr4d 311 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
5531, 54mtbird 325 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
5655ralrimivva 3202 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 21075 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5857adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5921, 22, 56, 58mpbir3and 1343 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝐽)
6020, 59impbida 801 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  cdif 3948  wss 3951  {csn 4626  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  0gc0g 17484  1rcur 20178  DivRingcdr 20729  LModclmod 20858  LSubSpclss 20929  LSpanclspn 20969  LBasisclbs 21073  LVecclvec 21101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-drng 20731  df-lmod 20860  df-lss 20930  df-lsp 20970  df-lbs 21074  df-lvec 21102
This theorem is referenced by:  islbs3  21157  lbsacsbs  21158  lbsextlem4  21163  lbslsat  33667
  Copyright terms: Public domain W3C validator