MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 21003
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Baseβ€˜π‘Š)
islbs2.j 𝐽 = (LBasisβ€˜π‘Š)
islbs2.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
islbs2 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑁   π‘₯,𝑉   π‘₯,π‘Š   π‘₯,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
2 islbs2.j . . . . 5 𝐽 = (LBasisβ€˜π‘Š)
31, 2lbsss 20923 . . . 4 (𝐡 ∈ 𝐽 β†’ 𝐡 βŠ† 𝑉)
43adantl 481 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ 𝐡 βŠ† 𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpanβ€˜π‘Š)
61, 2, 5lbssp 20925 . . . 4 (𝐡 ∈ 𝐽 β†’ (π‘β€˜π΅) = 𝑉)
76adantl 481 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (π‘β€˜π΅) = 𝑉)
8 lveclmod 20952 . . . . . . 7 (π‘Š ∈ LVec β†’ π‘Š ∈ LMod)
9 eqid 2726 . . . . . . . . 9 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
109lvecdrng 20951 . . . . . . . 8 (π‘Š ∈ LVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
11 eqid 2726 . . . . . . . . 9 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
12 eqid 2726 . . . . . . . . 9 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
1311, 12drngunz 20604 . . . . . . . 8 ((Scalarβ€˜π‘Š) ∈ DivRing β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
1410, 13syl 17 . . . . . . 7 (π‘Š ∈ LVec β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
158, 14jca 511 . . . . . 6 (π‘Š ∈ LVec β†’ (π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
162, 5, 9, 12, 11lbsind2 20927 . . . . . 6 (((π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1715, 16syl3an1 1160 . . . . 5 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
18173expa 1115 . . . 4 (((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1918ralrimiva 3140 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
204, 7, 193jca 1125 . 2 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
21 simpr1 1191 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 βŠ† 𝑉)
22 simpr2 1192 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (π‘β€˜π΅) = 𝑉)
23 id 22 . . . . . . . 8 (π‘₯ = 𝑦 β†’ π‘₯ = 𝑦)
24 sneq 4633 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
2524difeq2d 4117 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝑦}))
2625fveq2d 6888 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘β€˜(𝐡 βˆ– {π‘₯})) = (π‘β€˜(𝐡 βˆ– {𝑦})))
2723, 26eleq12d 2821 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
2827notbid 318 . . . . . 6 (π‘₯ = 𝑦 β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
29 simplr3 1214 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
30 simprl 768 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝐡)
3128, 29, 30rspcdva 3607 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
32 simpll 764 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LVec)
33 simprr 770 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))
34 eldifsn 4785 . . . . . . . . 9 (𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) ↔ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3533, 34sylib 217 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3621adantr 480 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝐡 βŠ† 𝑉)
3736, 30sseldd 3978 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝑉)
38 eqid 2726 . . . . . . . . 9 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
39 eqid 2726 . . . . . . . . 9 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
401, 9, 38, 39, 11, 5lspsnvs 20963 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝑦 ∈ 𝑉) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4132, 35, 37, 40syl3anc 1368 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4241sseq1d 4008 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
43 eqid 2726 . . . . . . 7 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
448adantr 480 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ π‘Š ∈ LMod)
4544adantr 480 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LMod)
4636ssdifssd 4137 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝐡 βˆ– {𝑦}) βŠ† 𝑉)
471, 43, 5lspcl 20821 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝐡 βˆ– {𝑦}) βŠ† 𝑉) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4845, 46, 47syl2anc 583 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4935simpld 494 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
501, 9, 38, 39lmodvscl 20722 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑉) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1368 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51lspsnel5 20840 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
531, 43, 5, 45, 48, 37lspsnel5 20840 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
5442, 52, 533bitr4d 311 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
5531, 54mtbird 325 . . . 4 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
5655ralrimivva 3194 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 20922 . . . 4 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5857adantr 480 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5921, 22, 56, 58mpbir3and 1339 . 2 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 ∈ 𝐽)
6020, 59impbida 798 1 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2934  βˆ€wral 3055   βˆ– cdif 3940   βŠ† wss 3943  {csn 4623  β€˜cfv 6536  (class class class)co 7404  Basecbs 17151  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  1rcur 20084  DivRingcdr 20585  LModclmod 20704  LSubSpclss 20776  LSpanclspn 20816  LBasisclbs 20920  LVecclvec 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8209  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-cmn 19700  df-abl 19701  df-mgp 20038  df-rng 20056  df-ur 20085  df-ring 20138  df-oppr 20234  df-dvdsr 20257  df-unit 20258  df-invr 20288  df-drng 20587  df-lmod 20706  df-lss 20777  df-lsp 20817  df-lbs 20921  df-lvec 20949
This theorem is referenced by:  islbs3  21004  lbsacsbs  21005  lbsextlem4  21010  lbslsat  33219
  Copyright terms: Public domain W3C validator