MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 21064
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Base‘𝑊)
islbs2.j 𝐽 = (LBasis‘𝑊)
islbs2.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
islbs2 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑉   𝑥,𝑊   𝑥,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Base‘𝑊)
2 islbs2.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2lbsss 20984 . . . 4 (𝐵𝐽𝐵𝑉)
43adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → 𝐵𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpan‘𝑊)
61, 2, 5lbssp 20986 . . . 4 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
76adantl 481 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝑁𝐵) = 𝑉)
8 lveclmod 21013 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
9 eqid 2729 . . . . . . . . 9 (Scalar‘𝑊) = (Scalar‘𝑊)
109lvecdrng 21012 . . . . . . . 8 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
11 eqid 2729 . . . . . . . . 9 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
12 eqid 2729 . . . . . . . . 9 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1311, 12drngunz 20656 . . . . . . . 8 ((Scalar‘𝑊) ∈ DivRing → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
1410, 13syl 17 . . . . . . 7 (𝑊 ∈ LVec → (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊)))
158, 14jca 511 . . . . . 6 (𝑊 ∈ LVec → (𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))))
162, 5, 9, 12, 11lbsind2 20988 . . . . . 6 (((𝑊 ∈ LMod ∧ (1r‘(Scalar‘𝑊)) ≠ (0g‘(Scalar‘𝑊))) ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1715, 16syl3an1 1163 . . . . 5 ((𝑊 ∈ LVec ∧ 𝐵𝐽𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
18173expa 1118 . . . 4 (((𝑊 ∈ LVec ∧ 𝐵𝐽) ∧ 𝑥𝐵) → ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
1918ralrimiva 3125 . . 3 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
204, 7, 193jca 1128 . 2 ((𝑊 ∈ LVec ∧ 𝐵𝐽) → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
21 simpr1 1195 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝑉)
22 simpr2 1196 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝑁𝐵) = 𝑉)
23 id 22 . . . . . . . 8 (𝑥 = 𝑦𝑥 = 𝑦)
24 sneq 4599 . . . . . . . . . 10 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524difeq2d 4089 . . . . . . . . 9 (𝑥 = 𝑦 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝑦}))
2625fveq2d 6862 . . . . . . . 8 (𝑥 = 𝑦 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝑦})))
2723, 26eleq12d 2822 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
2827notbid 318 . . . . . 6 (𝑥 = 𝑦 → (¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
29 simplr3 1218 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))
30 simprl 770 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝐵)
3128, 29, 30rspcdva 3589 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})))
32 simpll 766 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LVec)
33 simprr 772 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))
34 eldifsn 4750 . . . . . . . . 9 (𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ↔ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3533, 34sylib 218 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))))
3621adantr 480 . . . . . . . . 9 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝐵𝑉)
3736, 30sseldd 3947 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑦𝑉)
38 eqid 2729 . . . . . . . . 9 ( ·𝑠𝑊) = ( ·𝑠𝑊)
39 eqid 2729 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
401, 9, 38, 39, 11, 5lspsnvs 21024 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑧 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑦𝑉) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4132, 35, 37, 40syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) = (𝑁‘{𝑦}))
4241sseq1d 3978 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
43 eqid 2729 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
448adantr 480 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝑊 ∈ LMod)
4544adantr 480 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑊 ∈ LMod)
4636ssdifssd 4110 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝐵 ∖ {𝑦}) ⊆ 𝑉)
471, 43, 5lspcl 20882 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐵 ∖ {𝑦}) ⊆ 𝑉) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4845, 46, 47syl2anc 584 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑁‘(𝐵 ∖ {𝑦})) ∈ (LSubSp‘𝑊))
4935simpld 494 . . . . . . . 8 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → 𝑧 ∈ (Base‘(Scalar‘𝑊)))
501, 9, 38, 39lmodvscl 20784 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑧 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑦𝑉) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1373 . . . . . . 7 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑧( ·𝑠𝑊)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51ellspsn5b 20901 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{(𝑧( ·𝑠𝑊)𝑦)}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
531, 43, 5, 45, 48, 37ellspsn5b 20901 . . . . . 6 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → (𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ (𝑁‘{𝑦}) ⊆ (𝑁‘(𝐵 ∖ {𝑦}))))
5442, 52, 533bitr4d 311 . . . . 5 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ((𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})) ↔ 𝑦 ∈ (𝑁‘(𝐵 ∖ {𝑦}))))
5531, 54mtbird 325 . . . 4 (((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) ∧ (𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}))) → ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
5655ralrimivva 3180 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 20983 . . . 4 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5857adantr 480 . . 3 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑦𝐵𝑧 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑧( ·𝑠𝑊)𝑦) ∈ (𝑁‘(𝐵 ∖ {𝑦})))))
5921, 22, 56, 58mpbir3and 1343 . 2 ((𝑊 ∈ LVec ∧ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))) → 𝐵𝐽)
6020, 59impbida 800 1 (𝑊 ∈ LVec → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵 ¬ 𝑥 ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  1rcur 20090  DivRingcdr 20638  LModclmod 20766  LSubSpclss 20837  LSpanclspn 20877  LBasisclbs 20981  LVecclvec 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lbs 20982  df-lvec 21010
This theorem is referenced by:  islbs3  21065  lbsacsbs  21066  lbsextlem4  21071  lbslsat  33612
  Copyright terms: Public domain W3C validator