MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islbs2 Structured version   Visualization version   GIF version

Theorem islbs2 20631
Description: An equivalent formulation of the basis predicate in a vector space: a subset is a basis iff no element is in the span of the rest of the set. (Contributed by Mario Carneiro, 14-Jan-2015.)
Hypotheses
Ref Expression
islbs2.v 𝑉 = (Baseβ€˜π‘Š)
islbs2.j 𝐽 = (LBasisβ€˜π‘Š)
islbs2.n 𝑁 = (LSpanβ€˜π‘Š)
Assertion
Ref Expression
islbs2 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Distinct variable groups:   π‘₯,𝐡   π‘₯,𝑁   π‘₯,𝑉   π‘₯,π‘Š   π‘₯,𝐽

Proof of Theorem islbs2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islbs2.v . . . . 5 𝑉 = (Baseβ€˜π‘Š)
2 islbs2.j . . . . 5 𝐽 = (LBasisβ€˜π‘Š)
31, 2lbsss 20554 . . . 4 (𝐡 ∈ 𝐽 β†’ 𝐡 βŠ† 𝑉)
43adantl 483 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ 𝐡 βŠ† 𝑉)
5 islbs2.n . . . . 5 𝑁 = (LSpanβ€˜π‘Š)
61, 2, 5lbssp 20556 . . . 4 (𝐡 ∈ 𝐽 β†’ (π‘β€˜π΅) = 𝑉)
76adantl 483 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (π‘β€˜π΅) = 𝑉)
8 lveclmod 20583 . . . . . . 7 (π‘Š ∈ LVec β†’ π‘Š ∈ LMod)
9 eqid 2737 . . . . . . . . 9 (Scalarβ€˜π‘Š) = (Scalarβ€˜π‘Š)
109lvecdrng 20582 . . . . . . . 8 (π‘Š ∈ LVec β†’ (Scalarβ€˜π‘Š) ∈ DivRing)
11 eqid 2737 . . . . . . . . 9 (0gβ€˜(Scalarβ€˜π‘Š)) = (0gβ€˜(Scalarβ€˜π‘Š))
12 eqid 2737 . . . . . . . . 9 (1rβ€˜(Scalarβ€˜π‘Š)) = (1rβ€˜(Scalarβ€˜π‘Š))
1311, 12drngunz 20217 . . . . . . . 8 ((Scalarβ€˜π‘Š) ∈ DivRing β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
1410, 13syl 17 . . . . . . 7 (π‘Š ∈ LVec β†’ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š)))
158, 14jca 513 . . . . . 6 (π‘Š ∈ LVec β†’ (π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
162, 5, 9, 12, 11lbsind2 20558 . . . . . 6 (((π‘Š ∈ LMod ∧ (1rβ€˜(Scalarβ€˜π‘Š)) β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1715, 16syl3an1 1164 . . . . 5 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽 ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
18173expa 1119 . . . 4 (((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) ∧ π‘₯ ∈ 𝐡) β†’ Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
1918ralrimiva 3144 . . 3 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
204, 7, 193jca 1129 . 2 ((π‘Š ∈ LVec ∧ 𝐡 ∈ 𝐽) β†’ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
21 simpr1 1195 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 βŠ† 𝑉)
22 simpr2 1196 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (π‘β€˜π΅) = 𝑉)
23 id 22 . . . . . . . 8 (π‘₯ = 𝑦 β†’ π‘₯ = 𝑦)
24 sneq 4601 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ {π‘₯} = {𝑦})
2524difeq2d 4087 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝑦}))
2625fveq2d 6851 . . . . . . . 8 (π‘₯ = 𝑦 β†’ (π‘β€˜(𝐡 βˆ– {π‘₯})) = (π‘β€˜(𝐡 βˆ– {𝑦})))
2723, 26eleq12d 2832 . . . . . . 7 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
2827notbid 318 . . . . . 6 (π‘₯ = 𝑦 β†’ (Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
29 simplr3 1218 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
30 simprl 770 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝐡)
3128, 29, 30rspcdva 3585 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
32 simpll 766 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LVec)
33 simprr 772 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))
34 eldifsn 4752 . . . . . . . . 9 (𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) ↔ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3533, 34sylib 217 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))))
3621adantr 482 . . . . . . . . 9 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝐡 βŠ† 𝑉)
3736, 30sseldd 3950 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑦 ∈ 𝑉)
38 eqid 2737 . . . . . . . . 9 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
39 eqid 2737 . . . . . . . . 9 (Baseβ€˜(Scalarβ€˜π‘Š)) = (Baseβ€˜(Scalarβ€˜π‘Š))
401, 9, 38, 39, 11, 5lspsnvs 20591 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑧 β‰  (0gβ€˜(Scalarβ€˜π‘Š))) ∧ 𝑦 ∈ 𝑉) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4132, 35, 37, 40syl3anc 1372 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) = (π‘β€˜{𝑦}))
4241sseq1d 3980 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
43 eqid 2737 . . . . . . 7 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
448adantr 482 . . . . . . . 8 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ π‘Š ∈ LMod)
4544adantr 482 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ π‘Š ∈ LMod)
4636ssdifssd 4107 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝐡 βˆ– {𝑦}) βŠ† 𝑉)
471, 43, 5lspcl 20453 . . . . . . . 8 ((π‘Š ∈ LMod ∧ (𝐡 βˆ– {𝑦}) βŠ† 𝑉) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4845, 46, 47syl2anc 585 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (π‘β€˜(𝐡 βˆ– {𝑦})) ∈ (LSubSpβ€˜π‘Š))
4935simpld 496 . . . . . . . 8 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)))
501, 9, 38, 39lmodvscl 20355 . . . . . . . 8 ((π‘Š ∈ LMod ∧ 𝑧 ∈ (Baseβ€˜(Scalarβ€˜π‘Š)) ∧ 𝑦 ∈ 𝑉) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
5145, 49, 37, 50syl3anc 1372 . . . . . . 7 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝑉)
521, 43, 5, 45, 48, 51lspsnel5 20472 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{(𝑧( ·𝑠 β€˜π‘Š)𝑦)}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
531, 43, 5, 45, 48, 37lspsnel5 20472 . . . . . 6 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ (𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ (π‘β€˜{𝑦}) βŠ† (π‘β€˜(𝐡 βˆ– {𝑦}))))
5442, 52, 533bitr4d 311 . . . . 5 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ ((𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})) ↔ 𝑦 ∈ (π‘β€˜(𝐡 βˆ– {𝑦}))))
5531, 54mtbird 325 . . . 4 (((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) ∧ (𝑦 ∈ 𝐡 ∧ 𝑧 ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}))) β†’ Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
5655ralrimivva 3198 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))
571, 9, 38, 39, 2, 5, 11islbs 20553 . . . 4 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5857adantr 482 . . 3 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘¦ ∈ 𝐡 βˆ€π‘§ ∈ ((Baseβ€˜(Scalarβ€˜π‘Š)) βˆ– {(0gβ€˜(Scalarβ€˜π‘Š))}) Β¬ (𝑧( ·𝑠 β€˜π‘Š)𝑦) ∈ (π‘β€˜(𝐡 βˆ– {𝑦})))))
5921, 22, 56, 58mpbir3and 1343 . 2 ((π‘Š ∈ LVec ∧ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))) β†’ 𝐡 ∈ 𝐽)
6020, 59impbida 800 1 (π‘Š ∈ LVec β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 Β¬ π‘₯ ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944  βˆ€wral 3065   βˆ– cdif 3912   βŠ† wss 3915  {csn 4591  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  Scalarcsca 17143   ·𝑠 cvsca 17144  0gc0g 17328  1rcur 19920  DivRingcdr 20199  LModclmod 20338  LSubSpclss 20408  LSpanclspn 20448  LBasisclbs 20551  LVecclvec 20579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-0g 17330  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-minusg 18759  df-sbg 18760  df-mgp 19904  df-ur 19921  df-ring 19973  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-drng 20201  df-lmod 20340  df-lss 20409  df-lsp 20449  df-lbs 20552  df-lvec 20580
This theorem is referenced by:  islbs3  20632  lbsacsbs  20633  lbsextlem4  20638  lbslsat  32353
  Copyright terms: Public domain W3C validator