Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lbslsp Structured version   Visualization version   GIF version

Theorem lbslsp 31105
Description: Any element of a left module 𝑀 can be expressed as a linear combination of the elements of a basis 𝑉 of 𝑀. (Contributed by Thierry Arnoux, 3-Aug-2023.)
Hypotheses
Ref Expression
lbslsp.v 𝐵 = (Base‘𝑀)
lbslsp.k 𝐾 = (Base‘𝑆)
lbslsp.s 𝑆 = (Scalar‘𝑀)
lbslsp.z 0 = (0g𝑆)
lbslsp.t · = ( ·𝑠𝑀)
lbslsp.m (𝜑𝑀 ∈ LMod)
lbslsp.1 (𝜑𝑉 ∈ (LBasis‘𝑀))
Assertion
Ref Expression
lbslsp (𝜑 → (𝑋𝐵 ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Distinct variable groups:   0 ,𝑎   · ,𝑎,𝑣   𝐵,𝑎   𝐾,𝑎,𝑣   𝑀,𝑎   𝑆,𝑎   𝑉,𝑎,𝑣   𝑋,𝑎   𝜑,𝑎,𝑣
Allowed substitution hints:   𝐵(𝑣)   𝑆(𝑣)   𝑀(𝑣)   𝑋(𝑣)   0 (𝑣)

Proof of Theorem lbslsp
StepHypRef Expression
1 lbslsp.1 . . . 4 (𝜑𝑉 ∈ (LBasis‘𝑀))
2 lbslsp.v . . . . 5 𝐵 = (Base‘𝑀)
3 eqid 2758 . . . . 5 (LBasis‘𝑀) = (LBasis‘𝑀)
4 eqid 2758 . . . . 5 (LSpan‘𝑀) = (LSpan‘𝑀)
52, 3, 4lbssp 19932 . . . 4 (𝑉 ∈ (LBasis‘𝑀) → ((LSpan‘𝑀)‘𝑉) = 𝐵)
61, 5syl 17 . . 3 (𝜑 → ((LSpan‘𝑀)‘𝑉) = 𝐵)
76eleq2d 2837 . 2 (𝜑 → (𝑋 ∈ ((LSpan‘𝑀)‘𝑉) ↔ 𝑋𝐵))
8 lbslsp.k . . 3 𝐾 = (Base‘𝑆)
9 lbslsp.s . . 3 𝑆 = (Scalar‘𝑀)
10 lbslsp.z . . 3 0 = (0g𝑆)
11 lbslsp.t . . 3 · = ( ·𝑠𝑀)
12 lbslsp.m . . 3 (𝜑𝑀 ∈ LMod)
132, 3lbsss 19930 . . . 4 (𝑉 ∈ (LBasis‘𝑀) → 𝑉𝐵)
141, 13syl 17 . . 3 (𝜑𝑉𝐵)
154, 2, 8, 9, 10, 11, 12, 14ellspds 31097 . 2 (𝜑 → (𝑋 ∈ ((LSpan‘𝑀)‘𝑉) ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
167, 15bitr3d 284 1 (𝜑 → (𝑋𝐵 ↔ ∃𝑎 ∈ (𝐾m 𝑉)(𝑎 finSupp 0𝑋 = (𝑀 Σg (𝑣𝑉 ↦ ((𝑎𝑣) · 𝑣))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3071  wss 3860   class class class wbr 5036  cmpt 5116  cfv 6340  (class class class)co 7156  m cmap 8422   finSupp cfsupp 8879  Basecbs 16554  Scalarcsca 16639   ·𝑠 cvsca 16640  0gc0g 16784   Σg cgsu 16785  LModclmod 19715  LSpanclspn 19824  LBasisclbs 19927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-er 8305  df-map 8424  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-z 12034  df-dec 12151  df-uz 12296  df-fz 12953  df-fzo 13096  df-seq 13432  df-hash 13754  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-hom 16660  df-cco 16661  df-0g 16786  df-gsum 16787  df-prds 16792  df-pws 16794  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-submnd 18036  df-grp 18185  df-minusg 18186  df-sbg 18187  df-mulg 18305  df-subg 18356  df-ghm 18436  df-cntz 18527  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-subrg 19614  df-lmod 19717  df-lss 19785  df-lsp 19825  df-lmhm 19875  df-lbs 19928  df-sra 20025  df-rgmod 20026  df-nzr 20112  df-dsmm 20510  df-frlm 20525  df-uvc 20561
This theorem is referenced by:  extdg1id  31271
  Copyright terms: Public domain W3C validator