| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsss | Structured version Visualization version GIF version | ||
| Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbsss | ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6856 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
| 2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2849 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
| 4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2731 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | eqid 2731 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 9 | eqid 2731 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 10 | 4, 5, 6, 7, 2, 8, 9 | islbs 21010 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 12 | 11 | ibi 267 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))) |
| 13 | 12 | simp1d 1142 | 1 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ⊆ wss 3897 {csn 4573 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LSpanclspn 20904 LBasisclbs 21008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-lbs 21009 |
| This theorem is referenced by: lbsel 21012 lbspss 21016 islbs2 21091 islbs3 21092 lmimlbs 21773 lbslsp 33342 lmimdim 33616 lvecdim0 33619 lssdimle 33620 lbsdiflsp0 33639 dimkerim 33640 fedgmullem1 33642 fedgmullem2 33643 fedgmul 33644 dimlssid 33645 extdg1id 33679 fldextrspunlsplem 33686 fldextrspunlsp 33687 fldextrspunlem1 33688 |
| Copyright terms: Public domain | W3C validator |