MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsss Structured version   Visualization version   GIF version

Theorem lbsss 20984
Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsss (𝐵𝐽𝐵𝑉)

Proof of Theorem lbsss
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6895 . . . . 5 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
2 lbsss.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2846 . . . 4 (𝐵𝐽𝑊 ∈ dom LBasis)
4 lbsss.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2729 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2729 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2729 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2729 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2729 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 2, 8, 9islbs 20983 . . . 4 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
113, 10syl 17 . . 3 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
1211ibi 267 . 2 (𝐵𝐽 → (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))
1312simp1d 1142 1 (𝐵𝐽𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  wral 3044  cdif 3911  wss 3914  {csn 4589  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LSpanclspn 20877  LBasisclbs 20981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-lbs 20982
This theorem is referenced by:  lbsel  20985  lbspss  20989  islbs2  21064  islbs3  21065  lmimlbs  21745  lbslsp  33348  lmimdim  33599  lvecdim0  33602  lssdimle  33603  lbsdiflsp0  33622  dimkerim  33623  fedgmullem1  33625  fedgmullem2  33626  fedgmul  33627  dimlssid  33628  extdg1id  33661  fldextrspunlsplem  33668  fldextrspunlsp  33669  fldextrspunlem1  33670
  Copyright terms: Public domain W3C validator