| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsss | Structured version Visualization version GIF version | ||
| Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbsss | ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6857 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
| 2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2846 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
| 4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 10 | 4, 5, 6, 7, 2, 8, 9 | islbs 20980 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 12 | 11 | ibi 267 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))) |
| 13 | 12 | simp1d 1142 | 1 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LSpanclspn 20874 LBasisclbs 20978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-lbs 20979 |
| This theorem is referenced by: lbsel 20982 lbspss 20986 islbs2 21061 islbs3 21062 lmimlbs 21743 lbslsp 33315 lmimdim 33576 lvecdim0 33579 lssdimle 33580 lbsdiflsp0 33599 dimkerim 33600 fedgmullem1 33602 fedgmullem2 33603 fedgmul 33604 dimlssid 33605 extdg1id 33639 fldextrspunlsplem 33646 fldextrspunlsp 33647 fldextrspunlem1 33648 |
| Copyright terms: Public domain | W3C validator |