MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsss Structured version   Visualization version   GIF version

Theorem lbsss 20339
Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsss (𝐵𝐽𝐵𝑉)

Proof of Theorem lbsss
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6806 . . . . 5 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
2 lbsss.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2857 . . . 4 (𝐵𝐽𝑊 ∈ dom LBasis)
4 lbsss.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2738 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2738 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2738 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2738 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2738 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 2, 8, 9islbs 20338 . . . 4 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
113, 10syl 17 . . 3 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
1211ibi 266 . 2 (𝐵𝐽 → (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))
1312simp1d 1141 1 (𝐵𝐽𝐵𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cdif 3884  wss 3887  {csn 4561  dom cdm 5589  cfv 6433  (class class class)co 7275  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  LSpanclspn 20233  LBasisclbs 20336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-lbs 20337
This theorem is referenced by:  lbsel  20340  lbspss  20344  islbs2  20416  islbs3  20417  lmimlbs  21043  lbslsp  31572  lvecdim0  31690  lssdimle  31691  lbsdiflsp0  31707  dimkerim  31708  fedgmullem1  31710  fedgmullem2  31711  fedgmul  31712  extdg1id  31738
  Copyright terms: Public domain W3C validator