| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbsss | Structured version Visualization version GIF version | ||
| Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| Ref | Expression |
|---|---|
| lbsss | ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6877 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
| 2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2846 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
| 4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2729 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2729 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | eqid 2729 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 10 | 4, 5, 6, 7, 2, 8, 9 | islbs 21015 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
| 12 | 11 | ibi 267 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))) |
| 13 | 12 | simp1d 1142 | 1 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3908 ⊆ wss 3911 {csn 4585 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 Scalarcsca 17199 ·𝑠 cvsca 17200 0gc0g 17378 LSpanclspn 20909 LBasisclbs 21013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-lbs 21014 |
| This theorem is referenced by: lbsel 21017 lbspss 21021 islbs2 21096 islbs3 21097 lmimlbs 21778 lbslsp 33341 lmimdim 33592 lvecdim0 33595 lssdimle 33596 lbsdiflsp0 33615 dimkerim 33616 fedgmullem1 33618 fedgmullem2 33619 fedgmul 33620 dimlssid 33621 extdg1id 33654 fldextrspunlsplem 33661 fldextrspunlsp 33662 fldextrspunlem1 33663 |
| Copyright terms: Public domain | W3C validator |