Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lbsss | Structured version Visualization version GIF version |
Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
Ref | Expression |
---|---|
lbsss | ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6696 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2871 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2759 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | eqid 2759 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
7 | eqid 2759 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
8 | eqid 2759 | . . . . 5 ⊢ (LSpan‘𝑊) = (LSpan‘𝑊) | |
9 | eqid 2759 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 4, 5, 6, 7, 2, 8, 9 | islbs 19931 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))) |
12 | 11 | ibi 270 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))) |
13 | 12 | simp1d 1140 | 1 ⊢ (𝐵 ∈ 𝐽 → 𝐵 ⊆ 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∖ cdif 3858 ⊆ wss 3861 {csn 4526 dom cdm 5529 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 Scalarcsca 16641 ·𝑠 cvsca 16642 0gc0g 16786 LSpanclspn 19826 LBasisclbs 19929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3700 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4803 df-br 5038 df-opab 5100 df-mpt 5118 df-id 5435 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-iota 6300 df-fun 6343 df-fv 6349 df-ov 7160 df-lbs 19930 |
This theorem is referenced by: lbsel 19933 lbspss 19937 islbs2 20009 islbs3 20010 lmimlbs 20616 lbslsp 31107 lvecdim0 31225 lssdimle 31226 lbsdiflsp0 31242 dimkerim 31243 fedgmullem1 31245 fedgmullem2 31246 fedgmul 31247 extdg1id 31273 |
Copyright terms: Public domain | W3C validator |