Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsss Structured version   Visualization version   GIF version

Theorem lbsss 19932
 Description: A basis is a set of vectors. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
Assertion
Ref Expression
lbsss (𝐵𝐽𝐵𝑉)

Proof of Theorem lbsss
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6696 . . . . 5 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
2 lbsss.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2871 . . . 4 (𝐵𝐽𝑊 ∈ dom LBasis)
4 lbsss.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2759 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2759 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2759 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 eqid 2759 . . . . 5 (LSpan‘𝑊) = (LSpan‘𝑊)
9 eqid 2759 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 2, 8, 9islbs 19931 . . . 4 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
113, 10syl 17 . . 3 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥})))))
1211ibi 270 . 2 (𝐵𝐽 → (𝐵𝑉 ∧ ((LSpan‘𝑊)‘𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ ((LSpan‘𝑊)‘(𝐵 ∖ {𝑥}))))
1312simp1d 1140 1 (𝐵𝐽𝐵𝑉)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ w3a 1085   = wceq 1539   ∈ wcel 2112  ∀wral 3071   ∖ cdif 3858   ⊆ wss 3861  {csn 4526  dom cdm 5529  ‘cfv 6341  (class class class)co 7157  Basecbs 16556  Scalarcsca 16641   ·𝑠 cvsca 16642  0gc0g 16786  LSpanclspn 19826  LBasisclbs 19929 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5174  ax-nul 5181  ax-pow 5239  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3700  df-dif 3864  df-un 3866  df-in 3868  df-ss 3878  df-nul 4229  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4803  df-br 5038  df-opab 5100  df-mpt 5118  df-id 5435  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-iota 6300  df-fun 6343  df-fv 6349  df-ov 7160  df-lbs 19930 This theorem is referenced by:  lbsel  19933  lbspss  19937  islbs2  20009  islbs3  20010  lmimlbs  20616  lbslsp  31107  lvecdim0  31225  lssdimle  31226  lbsdiflsp0  31242  dimkerim  31243  fedgmullem1  31245  fedgmullem2  31246  fedgmul  31247  extdg1id  31273
 Copyright terms: Public domain W3C validator