MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind Structured version   Visualization version   GIF version

Theorem lindsind 21860
Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindsind (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸𝐹)
2 eldifsn 4811 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 elfvdm 6957 . . . . . 6 (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
6 eqid 2740 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
7 lindfind.s . . . . . . 7 · = ( ·𝑠𝑊)
8 lindfind.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
9 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
10 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
11 lindfind.z . . . . . . 7 0 = (0g𝐿)
126, 7, 8, 9, 10, 11islinds2 21856 . . . . . 6 (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
135, 12syl 17 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
1413ibi 267 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))
1514simprd 495 . . 3 (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
1615ad2antrr 725 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
17 oveq2 7456 . . . . 5 (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸))
18 sneq 4658 . . . . . . 7 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1918difeq2d 4149 . . . . . 6 (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸}))
2019fveq2d 6924 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸})))
2117, 20eleq12d 2838 . . . 4 (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2221notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
23 oveq1 7455 . . . . 5 (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸))
2423eleq1d 2829 . . . 4 (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2524notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2622, 25rspc2va 3647 . 2 (((𝐸𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
271, 4, 16, 26syl21anc 837 1 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  cdif 3973  wss 3976  {csn 4648  dom cdm 5700  cfv 6573  (class class class)co 7448  Basecbs 17258  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LSpanclspn 20992  LIndSclinds 21848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-lindf 21849  df-linds 21850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator