MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind Structured version   Visualization version   GIF version

Theorem lindsind 21726
Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindsind (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸𝐹)
2 eldifsn 4750 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 elfvdm 6895 . . . . . 6 (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
6 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
7 lindfind.s . . . . . . 7 · = ( ·𝑠𝑊)
8 lindfind.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
9 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
10 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
11 lindfind.z . . . . . . 7 0 = (0g𝐿)
126, 7, 8, 9, 10, 11islinds2 21722 . . . . . 6 (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
135, 12syl 17 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
1413ibi 267 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))
1514simprd 495 . . 3 (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
1615ad2antrr 726 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
17 oveq2 7395 . . . . 5 (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸))
18 sneq 4599 . . . . . . 7 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1918difeq2d 4089 . . . . . 6 (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸}))
2019fveq2d 6862 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸})))
2117, 20eleq12d 2822 . . . 4 (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2221notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
23 oveq1 7394 . . . . 5 (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸))
2423eleq1d 2813 . . . 4 (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2524notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2622, 25rspc2va 3600 . 2 (((𝐸𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
271, 4, 16, 26syl21anc 837 1 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  {csn 4589  dom cdm 5638  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  LSpanclspn 20877  LIndSclinds 21714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-lindf 21715  df-linds 21716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator