Step | Hyp | Ref
| Expression |
1 | | simplr 766 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐸 ∈ 𝐹) |
2 | | eldifsn 4720 |
. . . 4
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) |
3 | 2 | biimpri 227 |
. . 3
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
4 | 3 | adantl 482 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
5 | | elfvdm 6806 |
. . . . . 6
⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) |
6 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
7 | | lindfind.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
8 | | lindfind.n |
. . . . . . 7
⊢ 𝑁 = (LSpan‘𝑊) |
9 | | lindfind.l |
. . . . . . 7
⊢ 𝐿 = (Scalar‘𝑊) |
10 | | lindfind.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐿) |
11 | | lindfind.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐿) |
12 | 6, 7, 8, 9, 10, 11 | islinds2 21020 |
. . . . . 6
⊢ (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) |
13 | 5, 12 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) |
14 | 13 | ibi 266 |
. . . 4
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))) |
15 | 14 | simprd 496 |
. . 3
⊢ (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) |
16 | 15 | ad2antrr 723 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) |
17 | | oveq2 7283 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸)) |
18 | | sneq 4571 |
. . . . . . 7
⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) |
19 | 18 | difeq2d 4057 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸})) |
20 | 19 | fveq2d 6778 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸}))) |
21 | 17, 20 | eleq12d 2833 |
. . . 4
⊢ (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
22 | 21 | notbid 318 |
. . 3
⊢ (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
23 | | oveq1 7282 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸)) |
24 | 23 | eleq1d 2823 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
25 | 24 | notbid 318 |
. . 3
⊢ (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
26 | 22, 25 | rspc2va 3571 |
. 2
⊢ (((𝐸 ∈ 𝐹 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) |
27 | 1, 4, 16, 26 | syl21anc 835 |
1
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) |