| Step | Hyp | Ref
| Expression |
| 1 | | simplr 768 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐸 ∈ 𝐹) |
| 2 | | eldifsn 4767 |
. . . 4
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) |
| 3 | 2 | biimpri 228 |
. . 3
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
| 4 | 3 | adantl 481 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐴 ∈ (𝐾 ∖ { 0 })) |
| 5 | | elfvdm 6918 |
. . . . . 6
⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) |
| 6 | | eqid 2736 |
. . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) |
| 7 | | lindfind.s |
. . . . . . 7
⊢ · = (
·𝑠 ‘𝑊) |
| 8 | | lindfind.n |
. . . . . . 7
⊢ 𝑁 = (LSpan‘𝑊) |
| 9 | | lindfind.l |
. . . . . . 7
⊢ 𝐿 = (Scalar‘𝑊) |
| 10 | | lindfind.k |
. . . . . . 7
⊢ 𝐾 = (Base‘𝐿) |
| 11 | | lindfind.z |
. . . . . . 7
⊢ 0 =
(0g‘𝐿) |
| 12 | 6, 7, 8, 9, 10, 11 | islinds2 21778 |
. . . . . 6
⊢ (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) |
| 13 | 5, 12 | syl 17 |
. . . . 5
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) |
| 14 | 13 | ibi 267 |
. . . 4
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))) |
| 15 | 14 | simprd 495 |
. . 3
⊢ (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) |
| 16 | 15 | ad2antrr 726 |
. 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) |
| 17 | | oveq2 7418 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸)) |
| 18 | | sneq 4616 |
. . . . . . 7
⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) |
| 19 | 18 | difeq2d 4106 |
. . . . . 6
⊢ (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸})) |
| 20 | 19 | fveq2d 6885 |
. . . . 5
⊢ (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸}))) |
| 21 | 17, 20 | eleq12d 2829 |
. . . 4
⊢ (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
| 22 | 21 | notbid 318 |
. . 3
⊢ (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
| 23 | | oveq1 7417 |
. . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸)) |
| 24 | 23 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
| 25 | 24 | notbid 318 |
. . 3
⊢ (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) |
| 26 | 22, 25 | rspc2va 3618 |
. 2
⊢ (((𝐸 ∈ 𝐹 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) |
| 27 | 1, 4, 16, 26 | syl21anc 837 |
1
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) |