MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lindsind Structured version   Visualization version   GIF version

Theorem lindsind 21763
Description: A linearly independent set is independent: no nonzero element multiple can be expressed as a linear combination of the others. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lindfind.s · = ( ·𝑠𝑊)
lindfind.n 𝑁 = (LSpan‘𝑊)
lindfind.l 𝐿 = (Scalar‘𝑊)
lindfind.z 0 = (0g𝐿)
lindfind.k 𝐾 = (Base‘𝐿)
Assertion
Ref Expression
lindsind (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))

Proof of Theorem lindsind
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 768 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐸𝐹)
2 eldifsn 4739 . . . 4 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
32biimpri 228 . . 3 ((𝐴𝐾𝐴0 ) → 𝐴 ∈ (𝐾 ∖ { 0 }))
43adantl 481 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → 𝐴 ∈ (𝐾 ∖ { 0 }))
5 elfvdm 6865 . . . . . 6 (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS)
6 eqid 2733 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
7 lindfind.s . . . . . . 7 · = ( ·𝑠𝑊)
8 lindfind.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
9 lindfind.l . . . . . . 7 𝐿 = (Scalar‘𝑊)
10 lindfind.k . . . . . . 7 𝐾 = (Base‘𝐿)
11 lindfind.z . . . . . . 7 0 = (0g𝐿)
126, 7, 8, 9, 10, 11islinds2 21759 . . . . . 6 (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
135, 12syl 17 . . . . 5 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))))
1413ibi 267 . . . 4 (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))
1514simprd 495 . . 3 (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
1615ad2antrr 726 . 2 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))
17 oveq2 7363 . . . . 5 (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸))
18 sneq 4587 . . . . . . 7 (𝑒 = 𝐸 → {𝑒} = {𝐸})
1918difeq2d 4075 . . . . . 6 (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸}))
2019fveq2d 6835 . . . . 5 (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸})))
2117, 20eleq12d 2827 . . . 4 (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2221notbid 318 . . 3 (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
23 oveq1 7362 . . . . 5 (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸))
2423eleq1d 2818 . . . 4 (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2524notbid 318 . . 3 (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))))
2622, 25rspc2va 3585 . 2 (((𝐸𝐹𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒𝐹𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
271, 4, 16, 26syl21anc 837 1 (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸𝐹) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  wss 3898  {csn 4577  dom cdm 5621  cfv 6489  (class class class)co 7355  Basecbs 17127  Scalarcsca 17171   ·𝑠 cvsca 17172  0gc0g 17350  LSpanclspn 20913  LIndSclinds 21751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-lindf 21752  df-linds 21753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator