| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simplr 769 | . 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐸 ∈ 𝐹) | 
| 2 |  | eldifsn 4786 | . . . 4
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) | 
| 3 | 2 | biimpri 228 | . . 3
⊢ ((𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ (𝐾 ∖ { 0 })) | 
| 4 | 3 | adantl 481 | . 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → 𝐴 ∈ (𝐾 ∖ { 0 })) | 
| 5 |  | elfvdm 6943 | . . . . . 6
⊢ (𝐹 ∈ (LIndS‘𝑊) → 𝑊 ∈ dom LIndS) | 
| 6 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝑊) =
(Base‘𝑊) | 
| 7 |  | lindfind.s | . . . . . . 7
⊢  · = (
·𝑠 ‘𝑊) | 
| 8 |  | lindfind.n | . . . . . . 7
⊢ 𝑁 = (LSpan‘𝑊) | 
| 9 |  | lindfind.l | . . . . . . 7
⊢ 𝐿 = (Scalar‘𝑊) | 
| 10 |  | lindfind.k | . . . . . . 7
⊢ 𝐾 = (Base‘𝐿) | 
| 11 |  | lindfind.z | . . . . . . 7
⊢  0 =
(0g‘𝐿) | 
| 12 | 6, 7, 8, 9, 10, 11 | islinds2 21833 | . . . . . 6
⊢ (𝑊 ∈ dom LIndS → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) | 
| 13 | 5, 12 | syl 17 | . . . . 5
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))))) | 
| 14 | 13 | ibi 267 | . . . 4
⊢ (𝐹 ∈ (LIndS‘𝑊) → (𝐹 ⊆ (Base‘𝑊) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})))) | 
| 15 | 14 | simprd 495 | . . 3
⊢ (𝐹 ∈ (LIndS‘𝑊) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) | 
| 16 | 15 | ad2antrr 726 | . 2
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) | 
| 17 |  | oveq2 7439 | . . . . 5
⊢ (𝑒 = 𝐸 → (𝑎 · 𝑒) = (𝑎 · 𝐸)) | 
| 18 |  | sneq 4636 | . . . . . . 7
⊢ (𝑒 = 𝐸 → {𝑒} = {𝐸}) | 
| 19 | 18 | difeq2d 4126 | . . . . . 6
⊢ (𝑒 = 𝐸 → (𝐹 ∖ {𝑒}) = (𝐹 ∖ {𝐸})) | 
| 20 | 19 | fveq2d 6910 | . . . . 5
⊢ (𝑒 = 𝐸 → (𝑁‘(𝐹 ∖ {𝑒})) = (𝑁‘(𝐹 ∖ {𝐸}))) | 
| 21 | 17, 20 | eleq12d 2835 | . . . 4
⊢ (𝑒 = 𝐸 → ((𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) | 
| 22 | 21 | notbid 318 | . . 3
⊢ (𝑒 = 𝐸 → (¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒})) ↔ ¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) | 
| 23 |  | oveq1 7438 | . . . . 5
⊢ (𝑎 = 𝐴 → (𝑎 · 𝐸) = (𝐴 · 𝐸)) | 
| 24 | 23 | eleq1d 2826 | . . . 4
⊢ (𝑎 = 𝐴 → ((𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) | 
| 25 | 24 | notbid 318 | . . 3
⊢ (𝑎 = 𝐴 → (¬ (𝑎 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸})))) | 
| 26 | 22, 25 | rspc2va 3634 | . 2
⊢ (((𝐸 ∈ 𝐹 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) ∧ ∀𝑒 ∈ 𝐹 ∀𝑎 ∈ (𝐾 ∖ { 0 }) ¬ (𝑎 · 𝑒) ∈ (𝑁‘(𝐹 ∖ {𝑒}))) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) | 
| 27 | 1, 4, 16, 26 | syl21anc 838 | 1
⊢ (((𝐹 ∈ (LIndS‘𝑊) ∧ 𝐸 ∈ 𝐹) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐹 ∖ {𝐸}))) |