Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
2 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
3 | | eqid 2738 |
. . 3
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
4 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
5 | | eqid 2738 |
. . 3
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
6 | | eqid 2738 |
. . 3
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
7 | | lmhmlmod1 20295 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
8 | 7 | adantl 482 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) |
9 | | simpl1 1190 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ LMod) |
10 | | simpl2 1191 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑋 ∈ 𝐿) |
11 | | reslmhm2.u |
. . . . 5
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
12 | | reslmhm2.l |
. . . . 5
⊢ 𝐿 = (LSubSp‘𝑇) |
13 | 11, 12 | lsslmod 20222 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑈 ∈ LMod) |
14 | 9, 10, 13 | syl2anc 584 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑈 ∈ LMod) |
15 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
16 | 11, 15 | resssca 17053 |
. . . . 5
⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
17 | 16 | 3ad2ant2 1133 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
18 | 4, 15 | lmhmsca 20292 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
19 | 17, 18 | sylan9req 2799 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
20 | | lmghm 20293 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
21 | 12 | lsssubg 20219 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
22 | 11 | resghm2b 18852 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
23 | 21, 22 | stoic3 1779 |
. . . . 5
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
24 | 23 | biimpa 477 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
25 | 20, 24 | sylan2 593 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
26 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
27 | 4, 6, 1, 2, 26 | lmhmlin 20297 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
28 | 27 | 3expb 1119 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
29 | 28 | adantll 711 |
. . . 4
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
30 | | simpll2 1212 |
. . . . 5
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) |
31 | 11, 26 | ressvsca 17054 |
. . . . . 6
⊢ (𝑋 ∈ 𝐿 → (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑈)) |
32 | 31 | oveqd 7292 |
. . . . 5
⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
33 | 30, 32 | syl 17 |
. . . 4
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
34 | 29, 33 | eqtrd 2778 |
. . 3
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
35 | 1, 2, 3, 4, 5, 6, 8, 14, 19, 25, 34 | islmhmd 20301 |
. 2
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑈)) |
36 | | simpr 485 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑈)) |
37 | | simpl1 1190 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑇 ∈ LMod) |
38 | | simpl2 1191 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑋 ∈ 𝐿) |
39 | 11, 12 | reslmhm2 20315 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
40 | 36, 37, 38, 39 | syl3anc 1370 |
. 2
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
41 | 35, 40 | impbida 798 |
1
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈))) |