MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2b Structured version   Visualization version   GIF version

Theorem reslmhm2b 21053
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2b ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈)))

Proof of Theorem reslmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2737 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2737 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
4 eqid 2737 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2737 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2737 . . 3 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 21032 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
87adantl 481 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
9 simpl1 1192 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ LMod)
10 simpl2 1193 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑋𝐿)
11 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
12 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
1311, 12lsslmod 20958 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑈 ∈ LMod)
149, 10, 13syl2anc 584 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑈 ∈ LMod)
15 eqid 2737 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
1611, 15resssca 17387 . . . . 5 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
17163ad2ant2 1135 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (Scalar‘𝑇) = (Scalar‘𝑈))
184, 15lmhmsca 21029 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
1917, 18sylan9req 2798 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (Scalar‘𝑈) = (Scalar‘𝑆))
20 lmghm 21030 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2112lsssubg 20955 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2211resghm2b 19252 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
2321, 22stoic3 1776 . . . . 5 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
2423biimpa 476 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
2520, 24sylan2 593 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
26 eqid 2737 . . . . . . 7 ( ·𝑠𝑇) = ( ·𝑠𝑇)
274, 6, 1, 2, 26lmhmlin 21034 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
28273expb 1121 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
2928adantll 714 . . . 4 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
30 simpll2 1214 . . . . 5 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
3111, 26ressvsca 17388 . . . . . 6 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3231oveqd 7448 . . . . 5 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3330, 32syl 17 . . . 4 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3429, 33eqtrd 2777 . . 3 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
351, 2, 3, 4, 5, 6, 8, 14, 19, 25, 34islmhmd 21038 . 2 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑈))
36 simpr 484 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑈))
37 simpl1 1192 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑇 ∈ LMod)
38 simpl2 1193 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑋𝐿)
3911, 12reslmhm2 21052 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
4036, 37, 38, 39syl3anc 1373 . 2 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
4135, 40impbida 801 1 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wss 3951  ran crn 5686  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  Scalarcsca 17300   ·𝑠 cvsca 17301  SubGrpcsubg 19138   GrpHom cghm 19230  LModclmod 20858  LSubSpclss 20929   LMHom clmhm 21018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-sca 17313  df-vsca 17314  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-ghm 19231  df-mgp 20138  df-ur 20179  df-ring 20232  df-lmod 20860  df-lss 20930  df-lmhm 21021
This theorem is referenced by:  pj1lmhm2  21100  frlmsplit2  21793  dimkerim  33678  algextdeglem2  33759
  Copyright terms: Public domain W3C validator