| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 2 | | eqid 2737 |
. . 3
⊢ (
·𝑠 ‘𝑆) = ( ·𝑠
‘𝑆) |
| 3 | | eqid 2737 |
. . 3
⊢ (
·𝑠 ‘𝑈) = ( ·𝑠
‘𝑈) |
| 4 | | eqid 2737 |
. . 3
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
| 5 | | eqid 2737 |
. . 3
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 6 | | eqid 2737 |
. . 3
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
| 7 | | lmhmlmod1 21032 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod) |
| 8 | 7 | adantl 481 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod) |
| 9 | | simpl1 1192 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ LMod) |
| 10 | | simpl2 1193 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑋 ∈ 𝐿) |
| 11 | | reslmhm2.u |
. . . . 5
⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| 12 | | reslmhm2.l |
. . . . 5
⊢ 𝐿 = (LSubSp‘𝑇) |
| 13 | 11, 12 | lsslmod 20958 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑈 ∈ LMod) |
| 14 | 9, 10, 13 | syl2anc 584 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑈 ∈ LMod) |
| 15 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝑇) =
(Scalar‘𝑇) |
| 16 | 11, 15 | resssca 17387 |
. . . . 5
⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 17 | 16 | 3ad2ant2 1135 |
. . . 4
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 18 | 4, 15 | lmhmsca 21029 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 19 | 17, 18 | sylan9req 2798 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
| 20 | | lmghm 21030 |
. . . 4
⊢ (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 21 | 12 | lsssubg 20955 |
. . . . . 6
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 22 | 11 | resghm2b 19252 |
. . . . . 6
⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| 23 | 21, 22 | stoic3 1776 |
. . . . 5
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
| 24 | 23 | biimpa 476 |
. . . 4
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
| 25 | 20, 24 | sylan2 593 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
| 26 | | eqid 2737 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑇) |
| 27 | 4, 6, 1, 2, 26 | lmhmlin 21034 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
| 28 | 27 | 3expb 1121 |
. . . . 5
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
| 29 | 28 | adantll 714 |
. . . 4
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦))) |
| 30 | | simpll2 1214 |
. . . . 5
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) |
| 31 | 11, 26 | ressvsca 17388 |
. . . . . 6
⊢ (𝑋 ∈ 𝐿 → (
·𝑠 ‘𝑇) = ( ·𝑠
‘𝑈)) |
| 32 | 31 | oveqd 7448 |
. . . . 5
⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
| 33 | 30, 32 | syl 17 |
. . . 4
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠
‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
| 34 | 29, 33 | eqtrd 2777 |
. . 3
⊢ ((((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠
‘𝑆)𝑦)) = (𝑥( ·𝑠
‘𝑈)(𝐹‘𝑦))) |
| 35 | 1, 2, 3, 4, 5, 6, 8, 14, 19, 25, 34 | islmhmd 21038 |
. 2
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑈)) |
| 36 | | simpr 484 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑈)) |
| 37 | | simpl1 1192 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑇 ∈ LMod) |
| 38 | | simpl2 1193 |
. . 3
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑋 ∈ 𝐿) |
| 39 | 11, 12 | reslmhm2 21052 |
. . 3
⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 40 | 36, 37, 38, 39 | syl3anc 1373 |
. 2
⊢ (((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| 41 | 35, 40 | impbida 801 |
1
⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿 ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈))) |