MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2b Structured version   Visualization version   GIF version

Theorem reslmhm2b 20515
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2b ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈)))

Proof of Theorem reslmhm2b
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2736 . . 3 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2736 . . 3 ( ·𝑠𝑈) = ( ·𝑠𝑈)
4 eqid 2736 . . 3 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2736 . . 3 (Scalar‘𝑈) = (Scalar‘𝑈)
6 eqid 2736 . . 3 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 20494 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
87adantl 482 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑆 ∈ LMod)
9 simpl1 1191 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑇 ∈ LMod)
10 simpl2 1192 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑋𝐿)
11 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
12 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
1311, 12lsslmod 20421 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑈 ∈ LMod)
149, 10, 13syl2anc 584 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝑈 ∈ LMod)
15 eqid 2736 . . . . . 6 (Scalar‘𝑇) = (Scalar‘𝑇)
1611, 15resssca 17224 . . . . 5 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
17163ad2ant2 1134 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (Scalar‘𝑇) = (Scalar‘𝑈))
184, 15lmhmsca 20491 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
1917, 18sylan9req 2797 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → (Scalar‘𝑈) = (Scalar‘𝑆))
20 lmghm 20492 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2112lsssubg 20418 . . . . . 6 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2211resghm2b 19026 . . . . . 6 ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
2321, 22stoic3 1778 . . . . 5 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈)))
2423biimpa 477 . . . 4 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 GrpHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
2520, 24sylan2 593 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
26 eqid 2736 . . . . . . 7 ( ·𝑠𝑇) = ( ·𝑠𝑇)
274, 6, 1, 2, 26lmhmlin 20496 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
28273expb 1120 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
2928adantll 712 . . . 4 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
30 simpll2 1213 . . . . 5 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
3111, 26ressvsca 17225 . . . . . 6 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3231oveqd 7374 . . . . 5 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3330, 32syl 17 . . . 4 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3429, 33eqtrd 2776 . . 3 ((((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
351, 2, 3, 4, 5, 6, 8, 14, 19, 25, 34islmhmd 20500 . 2 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑇)) → 𝐹 ∈ (𝑆 LMHom 𝑈))
36 simpr 485 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑈))
37 simpl1 1191 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑇 ∈ LMod)
38 simpl2 1192 . . 3 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝑋𝐿)
3911, 12reslmhm2 20514 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
4036, 37, 38, 39syl3anc 1371 . 2 (((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) ∧ 𝐹 ∈ (𝑆 LMHom 𝑈)) → 𝐹 ∈ (𝑆 LMHom 𝑇))
4135, 40impbida 799 1 ((𝑇 ∈ LMod ∧ 𝑋𝐿 ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 LMHom 𝑇) ↔ 𝐹 ∈ (𝑆 LMHom 𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910  ran crn 5634  cfv 6496  (class class class)co 7357  Basecbs 17083  s cress 17112  Scalarcsca 17136   ·𝑠 cvsca 17137  SubGrpcsubg 18922   GrpHom cghm 19005  LModclmod 20322  LSubSpclss 20392   LMHom clmhm 20480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-ghm 19006  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393  df-lmhm 20483
This theorem is referenced by:  pj1lmhm2  20562  frlmsplit2  21179  dimkerim  32322
  Copyright terms: Public domain W3C validator