MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmvsca Structured version   Visualization version   GIF version

Theorem lmhmvsca 20959
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmhmvsca.v 𝑉 = (Base‘𝑀)
lmhmvsca.s · = ( ·𝑠𝑁)
lmhmvsca.j 𝐽 = (Scalar‘𝑁)
lmhmvsca.k 𝐾 = (Base‘𝐽)
Assertion
Ref Expression
lmhmvsca ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmvsca
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmvsca.v . 2 𝑉 = (Base‘𝑀)
2 eqid 2730 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 lmhmvsca.s . 2 · = ( ·𝑠𝑁)
4 eqid 2730 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 lmhmvsca.j . 2 𝐽 = (Scalar‘𝑁)
6 eqid 2730 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 20947 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
873ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 20946 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
1093ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 20944 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐽 = (Scalar‘𝑀))
12113ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐽 = (Scalar‘𝑀))
131fvexi 6875 . . . . . 6 𝑉 ∈ V
1413a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑉 ∈ V)
15 simpl2 1193 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → 𝐴𝐾)
16 eqid 2730 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
171, 16lmhmf 20948 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:𝑉⟶(Base‘𝑁))
18173ad2ant3 1135 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹:𝑉⟶(Base‘𝑁))
1918ffvelcdmda 7059 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ (Base‘𝑁))
20 fconstmpt 5703 . . . . . 6 (𝑉 × {𝐴}) = (𝑣𝑉𝐴)
2120a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑉 × {𝐴}) = (𝑣𝑉𝐴))
2218feqmptd 6932 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 = (𝑣𝑉 ↦ (𝐹𝑣)))
2314, 15, 19, 21, 22offval2 7676 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
24 eqidd 2731 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) = (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)))
25 oveq2 7398 . . . . 5 (𝑢 = (𝐹𝑣) → (𝐴 · 𝑢) = (𝐴 · (𝐹𝑣)))
2619, 22, 24, 25fmptco 7104 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
2723, 26eqtr4d 2768 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹))
28 simp2 1137 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐴𝐾)
29 lmhmvsca.k . . . . . 6 𝐾 = (Base‘𝐽)
3016, 5, 3, 29lmodvsghm 20836 . . . . 5 ((𝑁 ∈ LMod ∧ 𝐴𝐾) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
3110, 28, 30syl2anc 584 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
32 lmghm 20945 . . . . 5 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
33323ad2ant3 1135 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
34 ghmco 19175 . . . 4 (((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁) ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3531, 33, 34syl2anc 584 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3627, 35eqeltrd 2829 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 GrpHom 𝑁))
37 simpl1 1192 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐽 ∈ CRing)
38 simpl2 1193 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐴𝐾)
39 simprl 770 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
4012fveq2d 6865 . . . . . . . . 9 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (Base‘𝐽) = (Base‘(Scalar‘𝑀)))
4129, 40eqtrid 2777 . . . . . . . 8 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4241adantr 480 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4339, 42eleqtrrd 2832 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥𝐾)
44 eqid 2730 . . . . . . 7 (.r𝐽) = (.r𝐽)
4529, 44crngcom 20167 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝑥𝐾) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4637, 38, 43, 45syl3anc 1373 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4746oveq1d 7405 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)))
4810adantr 480 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑁 ∈ LMod)
4918adantr 480 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹:𝑉⟶(Base‘𝑁))
50 simprr 772 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑦𝑉)
5149, 50ffvelcdmd 7060 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹𝑦) ∈ (Base‘𝑁))
5216, 5, 3, 29, 44lmodvsass 20800 . . . . 5 ((𝑁 ∈ LMod ∧ (𝐴𝐾𝑥𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5348, 38, 43, 51, 52syl13anc 1374 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5416, 5, 3, 29, 44lmodvsass 20800 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥𝐾𝐴𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5548, 43, 38, 51, 54syl13anc 1374 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5647, 53, 553eqtr3d 2773 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴 · (𝑥 · (𝐹𝑦))) = (𝑥 · (𝐴 · (𝐹𝑦))))
571, 4, 2, 6lmodvscl 20791 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
58573expb 1120 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
598, 58sylan 580 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
6013a1i 11 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑉 ∈ V)
6118ffnd 6692 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 Fn 𝑉)
6261adantr 480 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹 Fn 𝑉)
634, 6, 1, 2, 3lmhmlin 20949 . . . . . . . 8 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
64633expb 1120 . . . . . . 7 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
65643ad2antl3 1188 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6665adantr 480 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6760, 38, 62, 66ofc1 7684 . . . 4 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
6859, 67mpdan 687 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
69 eqidd 2731 . . . . . 6 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (𝐹𝑦) = (𝐹𝑦))
7060, 38, 62, 69ofc1 7684 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7150, 70mpdan 687 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7271oveq2d 7406 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
7356, 68, 723eqtr4d 2775 . 2 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)))
741, 2, 3, 4, 5, 6, 8, 10, 12, 36, 73islmhmd 20953 1 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  {csn 4592  cmpt 5191   × cxp 5639  ccom 5645   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  Basecbs 17186  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231   GrpHom cghm 19151  CRingccrg 20150  LModclmod 20773   LMHom clmhm 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-ghm 19152  df-cmn 19719  df-mgp 20057  df-cring 20152  df-lmod 20775  df-lmhm 20936
This theorem is referenced by:  mendlmod  43185
  Copyright terms: Public domain W3C validator