Step | Hyp | Ref
| Expression |
1 | | lmhmvsca.v |
. 2
⊢ 𝑉 = (Base‘𝑀) |
2 | | eqid 2738 |
. 2
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
3 | | lmhmvsca.s |
. 2
⊢ · = (
·𝑠 ‘𝑁) |
4 | | eqid 2738 |
. 2
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
5 | | lmhmvsca.j |
. 2
⊢ 𝐽 = (Scalar‘𝑁) |
6 | | eqid 2738 |
. 2
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
7 | | lmhmlmod1 20295 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod) |
8 | 7 | 3ad2ant3 1134 |
. 2
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod) |
9 | | lmhmlmod2 20294 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod) |
10 | 9 | 3ad2ant3 1134 |
. 2
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod) |
11 | 4, 5 | lmhmsca 20292 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐽 = (Scalar‘𝑀)) |
12 | 11 | 3ad2ant3 1134 |
. 2
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐽 = (Scalar‘𝑀)) |
13 | 1 | fvexi 6788 |
. . . . . 6
⊢ 𝑉 ∈ V |
14 | 13 | a1i 11 |
. . . . 5
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑉 ∈ V) |
15 | | simpl2 1191 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣 ∈ 𝑉) → 𝐴 ∈ 𝐾) |
16 | | eqid 2738 |
. . . . . . . 8
⊢
(Base‘𝑁) =
(Base‘𝑁) |
17 | 1, 16 | lmhmf 20296 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:𝑉⟶(Base‘𝑁)) |
18 | 17 | 3ad2ant3 1134 |
. . . . . 6
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹:𝑉⟶(Base‘𝑁)) |
19 | 18 | ffvelrnda 6961 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣 ∈ 𝑉) → (𝐹‘𝑣) ∈ (Base‘𝑁)) |
20 | | fconstmpt 5649 |
. . . . . 6
⊢ (𝑉 × {𝐴}) = (𝑣 ∈ 𝑉 ↦ 𝐴) |
21 | 20 | a1i 11 |
. . . . 5
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑉 × {𝐴}) = (𝑣 ∈ 𝑉 ↦ 𝐴)) |
22 | 18 | feqmptd 6837 |
. . . . 5
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 = (𝑣 ∈ 𝑉 ↦ (𝐹‘𝑣))) |
23 | 14, 15, 19, 21, 22 | offval2 7553 |
. . . 4
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = (𝑣 ∈ 𝑉 ↦ (𝐴 · (𝐹‘𝑣)))) |
24 | | eqidd 2739 |
. . . . 5
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) = (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢))) |
25 | | oveq2 7283 |
. . . . 5
⊢ (𝑢 = (𝐹‘𝑣) → (𝐴 · 𝑢) = (𝐴 · (𝐹‘𝑣))) |
26 | 19, 22, 24, 25 | fmptco 7001 |
. . . 4
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) = (𝑣 ∈ 𝑉 ↦ (𝐴 · (𝐹‘𝑣)))) |
27 | 23, 26 | eqtr4d 2781 |
. . 3
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹)) |
28 | | simp2 1136 |
. . . . 5
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐴 ∈ 𝐾) |
29 | | lmhmvsca.k |
. . . . . 6
⊢ 𝐾 = (Base‘𝐽) |
30 | 16, 5, 3, 29 | lmodvsghm 20184 |
. . . . 5
⊢ ((𝑁 ∈ LMod ∧ 𝐴 ∈ 𝐾) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁)) |
31 | 10, 28, 30 | syl2anc 584 |
. . . 4
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁)) |
32 | | lmghm 20293 |
. . . . 5
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
33 | 32 | 3ad2ant3 1134 |
. . . 4
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
34 | | ghmco 18854 |
. . . 4
⊢ (((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁) ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁)) |
35 | 31, 33, 34 | syl2anc 584 |
. . 3
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁)) |
36 | 27, 35 | eqeltrd 2839 |
. 2
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 GrpHom 𝑁)) |
37 | | simpl1 1190 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝐽 ∈ CRing) |
38 | | simpl2 1191 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝐴 ∈ 𝐾) |
39 | | simprl 768 |
. . . . . . 7
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ (Base‘(Scalar‘𝑀))) |
40 | 12 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → (Base‘𝐽) = (Base‘(Scalar‘𝑀))) |
41 | 29, 40 | eqtrid 2790 |
. . . . . . . 8
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐾 = (Base‘(Scalar‘𝑀))) |
42 | 41 | adantr 481 |
. . . . . . 7
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝐾 = (Base‘(Scalar‘𝑀))) |
43 | 39, 42 | eleqtrrd 2842 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝑥 ∈ 𝐾) |
44 | | eqid 2738 |
. . . . . . 7
⊢
(.r‘𝐽) = (.r‘𝐽) |
45 | 29, 44 | crngcom 19801 |
. . . . . 6
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾) → (𝐴(.r‘𝐽)𝑥) = (𝑥(.r‘𝐽)𝐴)) |
46 | 37, 38, 43, 45 | syl3anc 1370 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝐴(.r‘𝐽)𝑥) = (𝑥(.r‘𝐽)𝐴)) |
47 | 46 | oveq1d 7290 |
. . . 4
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → ((𝐴(.r‘𝐽)𝑥) · (𝐹‘𝑦)) = ((𝑥(.r‘𝐽)𝐴) · (𝐹‘𝑦))) |
48 | 10 | adantr 481 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝑁 ∈ LMod) |
49 | 18 | adantr 481 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝐹:𝑉⟶(Base‘𝑁)) |
50 | | simprr 770 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝑦 ∈ 𝑉) |
51 | 49, 50 | ffvelrnd 6962 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
52 | 16, 5, 3, 29, 44 | lmodvsass 20148 |
. . . . 5
⊢ ((𝑁 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ∧ (𝐹‘𝑦) ∈ (Base‘𝑁))) → ((𝐴(.r‘𝐽)𝑥) · (𝐹‘𝑦)) = (𝐴 · (𝑥 · (𝐹‘𝑦)))) |
53 | 48, 38, 43, 51, 52 | syl13anc 1371 |
. . . 4
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → ((𝐴(.r‘𝐽)𝑥) · (𝐹‘𝑦)) = (𝐴 · (𝑥 · (𝐹‘𝑦)))) |
54 | 16, 5, 3, 29, 44 | lmodvsass 20148 |
. . . . 5
⊢ ((𝑁 ∈ LMod ∧ (𝑥 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑦) ∈ (Base‘𝑁))) → ((𝑥(.r‘𝐽)𝐴) · (𝐹‘𝑦)) = (𝑥 · (𝐴 · (𝐹‘𝑦)))) |
55 | 48, 43, 38, 51, 54 | syl13anc 1371 |
. . . 4
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → ((𝑥(.r‘𝐽)𝐴) · (𝐹‘𝑦)) = (𝑥 · (𝐴 · (𝐹‘𝑦)))) |
56 | 47, 53, 55 | 3eqtr3d 2786 |
. . 3
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝐴 · (𝑥 · (𝐹‘𝑦))) = (𝑥 · (𝐴 · (𝐹‘𝑦)))) |
57 | 1, 4, 2, 6 | lmodvscl 20140 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ 𝑉) |
58 | 57 | 3expb 1119 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ 𝑉) |
59 | 8, 58 | sylan 580 |
. . . 4
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ 𝑉) |
60 | 13 | a1i 11 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝑉 ∈ V) |
61 | 18 | ffnd 6601 |
. . . . . 6
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 Fn 𝑉) |
62 | 61 | adantr 481 |
. . . . 5
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → 𝐹 Fn 𝑉) |
63 | 4, 6, 1, 2, 3 | lmhmlin 20297 |
. . . . . . . 8
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥 · (𝐹‘𝑦))) |
64 | 63 | 3expb 1119 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥 · (𝐹‘𝑦))) |
65 | 64 | 3ad2antl3 1186 |
. . . . . 6
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥 · (𝐹‘𝑦))) |
66 | 65 | adantr 481 |
. . . . 5
⊢ ((((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) ∧ (𝑥( ·𝑠
‘𝑀)𝑦) ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥 · (𝐹‘𝑦))) |
67 | 60, 38, 62, 66 | ofc1 7559 |
. . . 4
⊢ ((((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) ∧ (𝑥( ·𝑠
‘𝑀)𝑦) ∈ 𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹‘𝑦)))) |
68 | 59, 67 | mpdan 684 |
. . 3
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹‘𝑦)))) |
69 | | eqidd 2739 |
. . . . . 6
⊢ ((((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (𝐹‘𝑦) = (𝐹‘𝑦)) |
70 | 60, 38, 62, 69 | ofc1 7559 |
. . . . 5
⊢ ((((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) ∧ 𝑦 ∈ 𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹‘𝑦))) |
71 | 50, 70 | mpdan 684 |
. . . 4
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹‘𝑦))) |
72 | 71 | oveq2d 7291 |
. . 3
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)) = (𝑥 · (𝐴 · (𝐹‘𝑦)))) |
73 | 56, 68, 72 | 3eqtr4d 2788 |
. 2
⊢ (((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ 𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦))) |
74 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 36, 73 | islmhmd 20301 |
1
⊢ ((𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁)) |