MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmvsca Structured version   Visualization version   GIF version

Theorem lmhmvsca 20979
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmhmvsca.v 𝑉 = (Base‘𝑀)
lmhmvsca.s · = ( ·𝑠𝑁)
lmhmvsca.j 𝐽 = (Scalar‘𝑁)
lmhmvsca.k 𝐾 = (Base‘𝐽)
Assertion
Ref Expression
lmhmvsca ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmvsca
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmvsca.v . 2 𝑉 = (Base‘𝑀)
2 eqid 2731 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 lmhmvsca.s . 2 · = ( ·𝑠𝑁)
4 eqid 2731 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 lmhmvsca.j . 2 𝐽 = (Scalar‘𝑁)
6 eqid 2731 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 20967 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
873ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 20966 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
1093ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 20964 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐽 = (Scalar‘𝑀))
12113ad2ant3 1135 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐽 = (Scalar‘𝑀))
131fvexi 6836 . . . . . 6 𝑉 ∈ V
1413a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑉 ∈ V)
15 simpl2 1193 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → 𝐴𝐾)
16 eqid 2731 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
171, 16lmhmf 20968 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:𝑉⟶(Base‘𝑁))
18173ad2ant3 1135 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹:𝑉⟶(Base‘𝑁))
1918ffvelcdmda 7017 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ (Base‘𝑁))
20 fconstmpt 5676 . . . . . 6 (𝑉 × {𝐴}) = (𝑣𝑉𝐴)
2120a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑉 × {𝐴}) = (𝑣𝑉𝐴))
2218feqmptd 6890 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 = (𝑣𝑉 ↦ (𝐹𝑣)))
2314, 15, 19, 21, 22offval2 7630 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
24 eqidd 2732 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) = (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)))
25 oveq2 7354 . . . . 5 (𝑢 = (𝐹𝑣) → (𝐴 · 𝑢) = (𝐴 · (𝐹𝑣)))
2619, 22, 24, 25fmptco 7062 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
2723, 26eqtr4d 2769 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹))
28 simp2 1137 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐴𝐾)
29 lmhmvsca.k . . . . . 6 𝐾 = (Base‘𝐽)
3016, 5, 3, 29lmodvsghm 20856 . . . . 5 ((𝑁 ∈ LMod ∧ 𝐴𝐾) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
3110, 28, 30syl2anc 584 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
32 lmghm 20965 . . . . 5 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
33323ad2ant3 1135 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
34 ghmco 19148 . . . 4 (((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁) ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3531, 33, 34syl2anc 584 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3627, 35eqeltrd 2831 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 GrpHom 𝑁))
37 simpl1 1192 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐽 ∈ CRing)
38 simpl2 1193 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐴𝐾)
39 simprl 770 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
4012fveq2d 6826 . . . . . . . . 9 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (Base‘𝐽) = (Base‘(Scalar‘𝑀)))
4129, 40eqtrid 2778 . . . . . . . 8 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4241adantr 480 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4339, 42eleqtrrd 2834 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥𝐾)
44 eqid 2731 . . . . . . 7 (.r𝐽) = (.r𝐽)
4529, 44crngcom 20169 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝑥𝐾) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4637, 38, 43, 45syl3anc 1373 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4746oveq1d 7361 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)))
4810adantr 480 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑁 ∈ LMod)
4918adantr 480 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹:𝑉⟶(Base‘𝑁))
50 simprr 772 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑦𝑉)
5149, 50ffvelcdmd 7018 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹𝑦) ∈ (Base‘𝑁))
5216, 5, 3, 29, 44lmodvsass 20820 . . . . 5 ((𝑁 ∈ LMod ∧ (𝐴𝐾𝑥𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5348, 38, 43, 51, 52syl13anc 1374 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5416, 5, 3, 29, 44lmodvsass 20820 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥𝐾𝐴𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5548, 43, 38, 51, 54syl13anc 1374 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5647, 53, 553eqtr3d 2774 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴 · (𝑥 · (𝐹𝑦))) = (𝑥 · (𝐴 · (𝐹𝑦))))
571, 4, 2, 6lmodvscl 20811 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
58573expb 1120 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
598, 58sylan 580 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
6013a1i 11 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑉 ∈ V)
6118ffnd 6652 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 Fn 𝑉)
6261adantr 480 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹 Fn 𝑉)
634, 6, 1, 2, 3lmhmlin 20969 . . . . . . . 8 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
64633expb 1120 . . . . . . 7 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
65643ad2antl3 1188 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6665adantr 480 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6760, 38, 62, 66ofc1 7638 . . . 4 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
6859, 67mpdan 687 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
69 eqidd 2732 . . . . . 6 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (𝐹𝑦) = (𝐹𝑦))
7060, 38, 62, 69ofc1 7638 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7150, 70mpdan 687 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7271oveq2d 7362 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
7356, 68, 723eqtr4d 2776 . 2 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)))
741, 2, 3, 4, 5, 6, 8, 10, 12, 36, 73islmhmd 20973 1 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  {csn 4573  cmpt 5170   × cxp 5612  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  Basecbs 17120  .rcmulr 17162  Scalarcsca 17164   ·𝑠 cvsca 17165   GrpHom cghm 19124  CRingccrg 20152  LModclmod 20793   LMHom clmhm 20953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-mhm 18691  df-grp 18849  df-ghm 19125  df-cmn 19694  df-mgp 20059  df-cring 20154  df-lmod 20795  df-lmhm 20956
This theorem is referenced by:  mendlmod  43292
  Copyright terms: Public domain W3C validator