MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmvsca Structured version   Visualization version   GIF version

Theorem lmhmvsca 19809
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
lmhmvsca.v 𝑉 = (Base‘𝑀)
lmhmvsca.s · = ( ·𝑠𝑁)
lmhmvsca.j 𝐽 = (Scalar‘𝑁)
lmhmvsca.k 𝐾 = (Base‘𝐽)
Assertion
Ref Expression
lmhmvsca ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmvsca
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmvsca.v . 2 𝑉 = (Base‘𝑀)
2 eqid 2819 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 lmhmvsca.s . 2 · = ( ·𝑠𝑁)
4 eqid 2819 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 lmhmvsca.j . 2 𝐽 = (Scalar‘𝑁)
6 eqid 2819 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 19797 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
873ad2ant3 1130 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 19796 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
1093ad2ant3 1130 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 19794 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐽 = (Scalar‘𝑀))
12113ad2ant3 1130 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐽 = (Scalar‘𝑀))
131fvexi 6677 . . . . . 6 𝑉 ∈ V
1413a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝑉 ∈ V)
15 simpl2 1187 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → 𝐴𝐾)
16 eqid 2819 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
171, 16lmhmf 19798 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:𝑉⟶(Base‘𝑁))
18173ad2ant3 1130 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹:𝑉⟶(Base‘𝑁))
1918ffvelrnda 6844 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑣𝑉) → (𝐹𝑣) ∈ (Base‘𝑁))
20 fconstmpt 5607 . . . . . 6 (𝑉 × {𝐴}) = (𝑣𝑉𝐴)
2120a1i 11 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑉 × {𝐴}) = (𝑣𝑉𝐴))
2218feqmptd 6726 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 = (𝑣𝑉 ↦ (𝐹𝑣)))
2314, 15, 19, 21, 22offval2 7418 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
24 eqidd 2820 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) = (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)))
25 oveq2 7156 . . . . 5 (𝑢 = (𝐹𝑣) → (𝐴 · 𝑢) = (𝐴 · (𝐹𝑣)))
2619, 22, 24, 25fmptco 6884 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) = (𝑣𝑉 ↦ (𝐴 · (𝐹𝑣))))
2723, 26eqtr4d 2857 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) = ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹))
28 simp2 1132 . . . . 5 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐴𝐾)
29 lmhmvsca.k . . . . . 6 𝐾 = (Base‘𝐽)
3016, 5, 3, 29lmodvsghm 19687 . . . . 5 ((𝑁 ∈ LMod ∧ 𝐴𝐾) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
3110, 28, 30syl2anc 586 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁))
32 lmghm 19795 . . . . 5 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
33323ad2ant3 1130 . . . 4 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
34 ghmco 18370 . . . 4 (((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∈ (𝑁 GrpHom 𝑁) ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3531, 33, 34syl2anc 586 . . 3 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑢 ∈ (Base‘𝑁) ↦ (𝐴 · 𝑢)) ∘ 𝐹) ∈ (𝑀 GrpHom 𝑁))
3627, 35eqeltrd 2911 . 2 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 GrpHom 𝑁))
37 simpl1 1186 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐽 ∈ CRing)
38 simpl2 1187 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐴𝐾)
39 simprl 769 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
4012fveq2d 6667 . . . . . . . . 9 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → (Base‘𝐽) = (Base‘(Scalar‘𝑀)))
4129, 40syl5eq 2866 . . . . . . . 8 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4241adantr 483 . . . . . . 7 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐾 = (Base‘(Scalar‘𝑀)))
4339, 42eleqtrrd 2914 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑥𝐾)
44 eqid 2819 . . . . . . 7 (.r𝐽) = (.r𝐽)
4529, 44crngcom 19304 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝑥𝐾) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4637, 38, 43, 45syl3anc 1366 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴(.r𝐽)𝑥) = (𝑥(.r𝐽)𝐴))
4746oveq1d 7163 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)))
4810adantr 483 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑁 ∈ LMod)
4918adantr 483 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹:𝑉⟶(Base‘𝑁))
50 simprr 771 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑦𝑉)
5149, 50ffvelrnd 6845 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹𝑦) ∈ (Base‘𝑁))
5216, 5, 3, 29, 44lmodvsass 19651 . . . . 5 ((𝑁 ∈ LMod ∧ (𝐴𝐾𝑥𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5348, 38, 43, 51, 52syl13anc 1367 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝐴(.r𝐽)𝑥) · (𝐹𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
5416, 5, 3, 29, 44lmodvsass 19651 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥𝐾𝐴𝐾 ∧ (𝐹𝑦) ∈ (Base‘𝑁))) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5548, 43, 38, 51, 54syl13anc 1367 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → ((𝑥(.r𝐽)𝐴) · (𝐹𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
5647, 53, 553eqtr3d 2862 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐴 · (𝑥 · (𝐹𝑦))) = (𝑥 · (𝐴 · (𝐹𝑦))))
571, 4, 2, 6lmodvscl 19643 . . . . . 6 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
58573expb 1115 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
598, 58sylan 582 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉)
6013a1i 11 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝑉 ∈ V)
6118ffnd 6508 . . . . . 6 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → 𝐹 Fn 𝑉)
6261adantr 483 . . . . 5 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → 𝐹 Fn 𝑉)
634, 6, 1, 2, 3lmhmlin 19799 . . . . . . . 8 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
64633expb 1115 . . . . . . 7 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
65643ad2antl3 1182 . . . . . 6 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6665adantr 483 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (𝐹𝑦)))
6760, 38, 62, 66ofc1 7424 . . . 4 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ 𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
6859, 67mpdan 685 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐴 · (𝑥 · (𝐹𝑦))))
69 eqidd 2820 . . . . . 6 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (𝐹𝑦) = (𝐹𝑦))
7060, 38, 62, 69ofc1 7424 . . . . 5 ((((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) ∧ 𝑦𝑉) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7150, 70mpdan 685 . . . 4 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦) = (𝐴 · (𝐹𝑦)))
7271oveq2d 7164 . . 3 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)) = (𝑥 · (𝐴 · (𝐹𝑦))))
7356, 68, 723eqtr4d 2864 . 2 (((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦𝑉)) → (((𝑉 × {𝐴}) ∘f · 𝐹)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥 · (((𝑉 × {𝐴}) ∘f · 𝐹)‘𝑦)))
741, 2, 3, 4, 5, 6, 8, 10, 12, 36, 73islmhmd 19803 1 ((𝐽 ∈ CRing ∧ 𝐴𝐾𝐹 ∈ (𝑀 LMHom 𝑁)) → ((𝑉 × {𝐴}) ∘f · 𝐹) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  Vcvv 3493  {csn 4559  cmpt 5137   × cxp 5546  ccom 5552   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7148  f cof 7399  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561   GrpHom cghm 18347  CRingccrg 19290  LModclmod 19626   LMHom clmhm 19783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-ghm 18348  df-cmn 18900  df-mgp 19232  df-cring 19292  df-lmod 19628  df-lmhm 19786
This theorem is referenced by:  mendlmod  39783
  Copyright terms: Public domain W3C validator