MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Structured version   Visualization version   GIF version

Theorem reslmhm 21015
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u 𝑈 = (LSubSp‘𝑆)
reslmhm.r 𝑅 = (𝑆s 𝑋)
Assertion
Ref Expression
reslmhm ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))

Proof of Theorem reslmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 20996 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 reslmhm.r . . . 4 𝑅 = (𝑆s 𝑋)
3 reslmhm.u . . . 4 𝑈 = (LSubSp‘𝑆)
42, 3lsslmod 20922 . . 3 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
6 lmhmlmod2 20995 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
76adantr 480 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑇 ∈ LMod)
8 lmghm 20994 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
93lsssubg 20919 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
101, 9sylan 580 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
112resghm 19220 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
128, 10, 11syl2an2r 685 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
13 eqid 2736 . . . . 5 (Scalar‘𝑆) = (Scalar‘𝑆)
14 eqid 2736 . . . . 5 (Scalar‘𝑇) = (Scalar‘𝑇)
1513, 14lmhmsca 20993 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
162, 13resssca 17362 . . . 4 (𝑋𝑈 → (Scalar‘𝑆) = (Scalar‘𝑅))
1715, 16sylan9eq 2791 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑇) = (Scalar‘𝑅))
18 simpll 766 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
19 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
20 eqid 2736 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2120, 3lssss 20898 . . . . . . . . . 10 (𝑋𝑈𝑋 ⊆ (Base‘𝑆))
2221adantl 481 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ⊆ (Base‘𝑆))
2322adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋 ⊆ (Base‘𝑆))
242, 20ressbas2 17264 . . . . . . . . . . . 12 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑅))
2522, 24syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 = (Base‘𝑅))
2625eleq2d 2821 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑅)))
2726biimpar 477 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏𝑋)
2827adantrl 716 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏𝑋)
2923, 28sseldd 3964 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2736 . . . . . . . 8 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2736 . . . . . . . 8 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2736 . . . . . . . 8 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3313, 30, 20, 31, 32lmhmlin 20998 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
3418, 19, 29, 33syl3anc 1373 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
351adantr 480 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑆 ∈ LMod)
3635adantr 480 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑆 ∈ LMod)
37 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋𝑈)
3813, 31, 30, 3lssvscl 20917 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏𝑋)) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
3936, 37, 19, 28, 38syl22anc 838 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
4039fvresd 6901 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝐹‘(𝑎( ·𝑠𝑆)𝑏)))
41 fvres 6900 . . . . . . . 8 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4241oveq2d 7426 . . . . . . 7 (𝑏𝑋 → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4328, 42syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4434, 40, 433eqtr4d 2781 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4544ralrimivva 3188 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4616adantl 481 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑆) = (Scalar‘𝑅))
4746fveq2d 6885 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑅)))
482, 31ressvsca 17363 . . . . . . . . 9 (𝑋𝑈 → ( ·𝑠𝑆) = ( ·𝑠𝑅))
4948adantl 481 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ( ·𝑠𝑆) = ( ·𝑠𝑅))
5049oveqd 7427 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑎( ·𝑠𝑆)𝑏) = (𝑎( ·𝑠𝑅)𝑏))
5150fveqeq2d 6889 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5251ralbidv 3164 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5347, 52raleqbidv 3329 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5445, 53mpbid 232 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
5512, 17, 543jca 1128 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
56 eqid 2736 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
57 eqid 2736 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
58 eqid 2736 . . 3 (Base‘𝑅) = (Base‘𝑅)
59 eqid 2736 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
6056, 14, 57, 58, 59, 32islmhm 20990 . 2 ((𝐹𝑋) ∈ (𝑅 LMHom 𝑇) ↔ ((𝑅 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))))
615, 7, 55, 60syl21anbrc 1345 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wss 3931  cres 5661  cfv 6536  (class class class)co 7410  Basecbs 17233  s cress 17256  Scalarcsca 17279   ·𝑠 cvsca 17280  SubGrpcsubg 19108   GrpHom cghm 19200  LModclmod 20822  LSubSpclss 20893   LMHom clmhm 20982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-sca 17292  df-vsca 17293  df-0g 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lss 20894  df-lmhm 20985
This theorem is referenced by:  frlmsplit2  21738  dimkerim  33672  lmhmlnmsplit  43078  pwssplit4  43080
  Copyright terms: Public domain W3C validator