MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Structured version   Visualization version   GIF version

Theorem reslmhm 20314
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u 𝑈 = (LSubSp‘𝑆)
reslmhm.r 𝑅 = (𝑆s 𝑋)
Assertion
Ref Expression
reslmhm ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))

Proof of Theorem reslmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 20295 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 reslmhm.r . . . 4 𝑅 = (𝑆s 𝑋)
3 reslmhm.u . . . 4 𝑈 = (LSubSp‘𝑆)
42, 3lsslmod 20222 . . 3 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
51, 4sylan 580 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
6 lmhmlmod2 20294 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
76adantr 481 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑇 ∈ LMod)
8 lmghm 20293 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
93lsssubg 20219 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
101, 9sylan 580 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
112resghm 18850 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
128, 10, 11syl2an2r 682 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
13 eqid 2738 . . . . 5 (Scalar‘𝑆) = (Scalar‘𝑆)
14 eqid 2738 . . . . 5 (Scalar‘𝑇) = (Scalar‘𝑇)
1513, 14lmhmsca 20292 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
162, 13resssca 17053 . . . 4 (𝑋𝑈 → (Scalar‘𝑆) = (Scalar‘𝑅))
1715, 16sylan9eq 2798 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑇) = (Scalar‘𝑅))
18 simpll 764 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
19 simprl 768 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
20 eqid 2738 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2120, 3lssss 20198 . . . . . . . . . 10 (𝑋𝑈𝑋 ⊆ (Base‘𝑆))
2221adantl 482 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ⊆ (Base‘𝑆))
2322adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋 ⊆ (Base‘𝑆))
242, 20ressbas2 16949 . . . . . . . . . . . 12 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑅))
2522, 24syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 = (Base‘𝑅))
2625eleq2d 2824 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑅)))
2726biimpar 478 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏𝑋)
2827adantrl 713 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏𝑋)
2923, 28sseldd 3922 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2738 . . . . . . . 8 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2738 . . . . . . . 8 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2738 . . . . . . . 8 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3313, 30, 20, 31, 32lmhmlin 20297 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
3418, 19, 29, 33syl3anc 1370 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
351adantr 481 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑆 ∈ LMod)
3635adantr 481 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑆 ∈ LMod)
37 simplr 766 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋𝑈)
3813, 31, 30, 3lssvscl 20217 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏𝑋)) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
3936, 37, 19, 28, 38syl22anc 836 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
4039fvresd 6794 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝐹‘(𝑎( ·𝑠𝑆)𝑏)))
41 fvres 6793 . . . . . . . 8 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4241oveq2d 7291 . . . . . . 7 (𝑏𝑋 → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4328, 42syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4434, 40, 433eqtr4d 2788 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4544ralrimivva 3123 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4616adantl 482 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑆) = (Scalar‘𝑅))
4746fveq2d 6778 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑅)))
482, 31ressvsca 17054 . . . . . . . . 9 (𝑋𝑈 → ( ·𝑠𝑆) = ( ·𝑠𝑅))
4948adantl 482 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ( ·𝑠𝑆) = ( ·𝑠𝑅))
5049oveqd 7292 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑎( ·𝑠𝑆)𝑏) = (𝑎( ·𝑠𝑅)𝑏))
5150fveqeq2d 6782 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5251ralbidv 3112 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5347, 52raleqbidv 3336 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5445, 53mpbid 231 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
5512, 17, 543jca 1127 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
56 eqid 2738 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
57 eqid 2738 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
58 eqid 2738 . . 3 (Base‘𝑅) = (Base‘𝑅)
59 eqid 2738 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
6056, 14, 57, 58, 59, 32islmhm 20289 . 2 ((𝐹𝑋) ∈ (𝑅 LMHom 𝑇) ↔ ((𝑅 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))))
615, 7, 55, 60syl21anbrc 1343 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wss 3887  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  s cress 16941  Scalarcsca 16965   ·𝑠 cvsca 16966  SubGrpcsubg 18749   GrpHom cghm 18831  LModclmod 20123  LSubSpclss 20193   LMHom clmhm 20281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-ghm 18832  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lss 20194  df-lmhm 20284
This theorem is referenced by:  frlmsplit2  20980  dimkerim  31708  lmhmlnmsplit  40912  pwssplit4  40914
  Copyright terms: Public domain W3C validator