MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm Structured version   Visualization version   GIF version

Theorem reslmhm 19817
Description: Restriction of a homomorphism to a subspace. (Contributed by Stefan O'Rear, 1-Jan-2015.)
Hypotheses
Ref Expression
reslmhm.u 𝑈 = (LSubSp‘𝑆)
reslmhm.r 𝑅 = (𝑆s 𝑋)
Assertion
Ref Expression
reslmhm ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))

Proof of Theorem reslmhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmhmlmod1 19798 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑆 ∈ LMod)
2 reslmhm.r . . . 4 𝑅 = (𝑆s 𝑋)
3 reslmhm.u . . . 4 𝑈 = (LSubSp‘𝑆)
42, 3lsslmod 19725 . . 3 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
51, 4sylan 583 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑅 ∈ LMod)
6 lmhmlmod2 19797 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝑇 ∈ LMod)
76adantr 484 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑇 ∈ LMod)
8 lmghm 19796 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
93lsssubg 19722 . . . . 5 ((𝑆 ∈ LMod ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
101, 9sylan 583 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ∈ (SubGrp‘𝑆))
112resghm 18366 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
128, 10, 11syl2an2r 684 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 GrpHom 𝑇))
13 eqid 2798 . . . . 5 (Scalar‘𝑆) = (Scalar‘𝑆)
14 eqid 2798 . . . . 5 (Scalar‘𝑇) = (Scalar‘𝑇)
1513, 14lmhmsca 19795 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑇) → (Scalar‘𝑇) = (Scalar‘𝑆))
162, 13resssca 16642 . . . 4 (𝑋𝑈 → (Scalar‘𝑆) = (Scalar‘𝑅))
1715, 16sylan9eq 2853 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑇) = (Scalar‘𝑅))
18 simpll 766 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝐹 ∈ (𝑆 LMHom 𝑇))
19 simprl 770 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑎 ∈ (Base‘(Scalar‘𝑆)))
20 eqid 2798 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
2120, 3lssss 19701 . . . . . . . . . 10 (𝑋𝑈𝑋 ⊆ (Base‘𝑆))
2221adantl 485 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 ⊆ (Base‘𝑆))
2322adantr 484 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋 ⊆ (Base‘𝑆))
242, 20ressbas2 16547 . . . . . . . . . . . 12 (𝑋 ⊆ (Base‘𝑆) → 𝑋 = (Base‘𝑅))
2522, 24syl 17 . . . . . . . . . . 11 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑋 = (Base‘𝑅))
2625eleq2d 2875 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑏𝑋𝑏 ∈ (Base‘𝑅)))
2726biimpar 481 . . . . . . . . 9 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ 𝑏 ∈ (Base‘𝑅)) → 𝑏𝑋)
2827adantrl 715 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏𝑋)
2923, 28sseldd 3916 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑏 ∈ (Base‘𝑆))
30 eqid 2798 . . . . . . . 8 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
31 eqid 2798 . . . . . . . 8 ( ·𝑠𝑆) = ( ·𝑠𝑆)
32 eqid 2798 . . . . . . . 8 ( ·𝑠𝑇) = ( ·𝑠𝑇)
3313, 30, 20, 31, 32lmhmlin 19800 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑆)) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
3418, 19, 29, 33syl3anc 1368 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝐹‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
351adantr 484 . . . . . . . . 9 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → 𝑆 ∈ LMod)
3635adantr 484 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑆 ∈ LMod)
37 simplr 768 . . . . . . . 8 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → 𝑋𝑈)
3813, 31, 30, 3lssvscl 19720 . . . . . . . 8 (((𝑆 ∈ LMod ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏𝑋)) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
3936, 37, 19, 28, 38syl22anc 837 . . . . . . 7 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑆)𝑏) ∈ 𝑋)
4039fvresd 6665 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝐹‘(𝑎( ·𝑠𝑆)𝑏)))
41 fvres 6664 . . . . . . . 8 (𝑏𝑋 → ((𝐹𝑋)‘𝑏) = (𝐹𝑏))
4241oveq2d 7151 . . . . . . 7 (𝑏𝑋 → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4328, 42syl 17 . . . . . 6 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) = (𝑎( ·𝑠𝑇)(𝐹𝑏)))
4434, 40, 433eqtr4d 2843 . . . . 5 (((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑏 ∈ (Base‘𝑅))) → ((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4544ralrimivva 3156 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
4616adantl 485 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Scalar‘𝑆) = (Scalar‘𝑅))
4746fveq2d 6649 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑅)))
482, 31ressvsca 16643 . . . . . . . . 9 (𝑋𝑈 → ( ·𝑠𝑆) = ( ·𝑠𝑅))
4948adantl 485 . . . . . . . 8 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ( ·𝑠𝑆) = ( ·𝑠𝑅))
5049oveqd 7152 . . . . . . 7 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝑎( ·𝑠𝑆)𝑏) = (𝑎( ·𝑠𝑅)𝑏))
5150fveqeq2d 6653 . . . . . 6 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5251ralbidv 3162 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5347, 52raleqbidv 3354 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (∀𝑎 ∈ (Base‘(Scalar‘𝑆))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑆)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)) ↔ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
5445, 53mpbid 235 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))
5512, 17, 543jca 1125 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏))))
56 eqid 2798 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
57 eqid 2798 . . 3 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
58 eqid 2798 . . 3 (Base‘𝑅) = (Base‘𝑅)
59 eqid 2798 . . 3 ( ·𝑠𝑅) = ( ·𝑠𝑅)
6056, 14, 57, 58, 59, 32islmhm 19792 . 2 ((𝐹𝑋) ∈ (𝑅 LMHom 𝑇) ↔ ((𝑅 ∈ LMod ∧ 𝑇 ∈ LMod) ∧ ((𝐹𝑋) ∈ (𝑅 GrpHom 𝑇) ∧ (Scalar‘𝑇) = (Scalar‘𝑅) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑅))∀𝑏 ∈ (Base‘𝑅)((𝐹𝑋)‘(𝑎( ·𝑠𝑅)𝑏)) = (𝑎( ·𝑠𝑇)((𝐹𝑋)‘𝑏)))))
615, 7, 55, 60syl21anbrc 1341 1 ((𝐹 ∈ (𝑆 LMHom 𝑇) ∧ 𝑋𝑈) → (𝐹𝑋) ∈ (𝑅 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881  cres 5521  cfv 6324  (class class class)co 7135  Basecbs 16475  s cress 16476  Scalarcsca 16560   ·𝑠 cvsca 16561  SubGrpcsubg 18265   GrpHom cghm 18347  LModclmod 19627  LSubSpclss 19696   LMHom clmhm 19784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-sca 16573  df-vsca 16574  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-ghm 18348  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697  df-lmhm 19787
This theorem is referenced by:  frlmsplit2  20462  dimkerim  31111  lmhmlnmsplit  40031  pwssplit4  40033
  Copyright terms: Public domain W3C validator