MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Structured version   Visualization version   GIF version

Theorem lmhmco 21042
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))

Proof of Theorem lmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2737 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2737 . 2 ( ·𝑠𝑂) = ( ·𝑠𝑂)
4 eqid 2737 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2737 . 2 (Scalar‘𝑂) = (Scalar‘𝑂)
6 eqid 2737 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 21032 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantl 481 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 21031 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝑂 ∈ LMod)
109adantr 480 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑂 ∈ LMod)
11 eqid 2737 . . . 4 (Scalar‘𝑁) = (Scalar‘𝑁)
1211, 5lmhmsca 21029 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → (Scalar‘𝑂) = (Scalar‘𝑁))
134, 11lmhmsca 21029 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1412, 13sylan9eq 2797 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑂) = (Scalar‘𝑀))
15 lmghm 21030 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝐹 ∈ (𝑁 GrpHom 𝑂))
16 lmghm 21030 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
17 ghmco 19254 . . 3 ((𝐹 ∈ (𝑁 GrpHom 𝑂) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
1815, 16, 17syl2an 596 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
19 simplr 769 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
20 simprl 771 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
21 simprr 773 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
22 eqid 2737 . . . . . . 7 ( ·𝑠𝑁) = ( ·𝑠𝑁)
234, 6, 1, 2, 22lmhmlin 21034 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2419, 20, 21, 23syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2524fveq2d 6910 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))))
26 simpll 767 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑁 LMHom 𝑂))
2713fveq2d 6910 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2827ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2920, 28eleqtrrd 2844 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
30 eqid 2737 . . . . . . . . 9 (Base‘𝑁) = (Base‘𝑁)
311, 30lmhmf 21033 . . . . . . . 8 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3231adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3332ffvelcdmda 7104 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3433adantrl 716 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
35 eqid 2737 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
3611, 35, 30, 22, 3lmhmlin 21034 . . . . 5 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐺𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3726, 29, 34, 36syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3825, 37eqtrd 2777 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3932ffnd 6737 . . . 4 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
407ad2antlr 727 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
411, 4, 2, 6lmodvscl 20876 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
4240, 20, 21, 41syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
43 fvco2 7006 . . . 4 ((𝐺 Fn (Base‘𝑀) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀)) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
4439, 42, 43syl2an2r 685 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
45 fvco2 7006 . . . . 5 ((𝐺 Fn (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4639, 21, 45syl2an2r 685 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4746oveq2d 7447 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
4838, 44, 473eqtr4d 2787 . 2 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)))
491, 2, 3, 4, 5, 6, 8, 10, 14, 18, 48islmhmd 21038 1 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ccom 5689   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301   GrpHom cghm 19230  LModclmod 20858   LMHom clmhm 21018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-map 8868  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-grp 18954  df-ghm 19231  df-lmod 20860  df-lmhm 21021
This theorem is referenced by:  lmimco  21864  nmhmco  24777  mendring  43200
  Copyright terms: Public domain W3C validator