MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Structured version   Visualization version   GIF version

Theorem lmhmco 20979
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))

Proof of Theorem lmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2733 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2733 . 2 ( ·𝑠𝑂) = ( ·𝑠𝑂)
4 eqid 2733 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2733 . 2 (Scalar‘𝑂) = (Scalar‘𝑂)
6 eqid 2733 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 20969 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantl 481 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 20968 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝑂 ∈ LMod)
109adantr 480 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑂 ∈ LMod)
11 eqid 2733 . . . 4 (Scalar‘𝑁) = (Scalar‘𝑁)
1211, 5lmhmsca 20966 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → (Scalar‘𝑂) = (Scalar‘𝑁))
134, 11lmhmsca 20966 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1412, 13sylan9eq 2788 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑂) = (Scalar‘𝑀))
15 lmghm 20967 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝐹 ∈ (𝑁 GrpHom 𝑂))
16 lmghm 20967 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
17 ghmco 19150 . . 3 ((𝐹 ∈ (𝑁 GrpHom 𝑂) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
1815, 16, 17syl2an 596 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
19 simplr 768 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
20 simprl 770 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
21 simprr 772 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
22 eqid 2733 . . . . . . 7 ( ·𝑠𝑁) = ( ·𝑠𝑁)
234, 6, 1, 2, 22lmhmlin 20971 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2419, 20, 21, 23syl3anc 1373 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2524fveq2d 6832 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))))
26 simpll 766 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑁 LMHom 𝑂))
2713fveq2d 6832 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2827ad2antlr 727 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2920, 28eleqtrrd 2836 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
30 eqid 2733 . . . . . . . . 9 (Base‘𝑁) = (Base‘𝑁)
311, 30lmhmf 20970 . . . . . . . 8 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3231adantl 481 . . . . . . 7 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3332ffvelcdmda 7023 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3433adantrl 716 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
35 eqid 2733 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
3611, 35, 30, 22, 3lmhmlin 20971 . . . . 5 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐺𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3726, 29, 34, 36syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3825, 37eqtrd 2768 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3932ffnd 6657 . . . 4 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
407ad2antlr 727 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
411, 4, 2, 6lmodvscl 20813 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
4240, 20, 21, 41syl3anc 1373 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
43 fvco2 6925 . . . 4 ((𝐺 Fn (Base‘𝑀) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀)) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
4439, 42, 43syl2an2r 685 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
45 fvco2 6925 . . . . 5 ((𝐺 Fn (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4639, 21, 45syl2an2r 685 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4746oveq2d 7368 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
4838, 44, 473eqtr4d 2778 . 2 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)))
491, 2, 3, 4, 5, 6, 8, 10, 14, 18, 48islmhmd 20975 1 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  ccom 5623   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7352  Basecbs 17122  Scalarcsca 17166   ·𝑠 cvsca 17167   GrpHom cghm 19126  LModclmod 20795   LMHom clmhm 20955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-map 8758  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-grp 18851  df-ghm 19127  df-lmod 20797  df-lmhm 20958
This theorem is referenced by:  lmimco  21783  nmhmco  24672  mendring  43305
  Copyright terms: Public domain W3C validator