Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. 2
⊢
(Base‘𝑀) =
(Base‘𝑀) |
2 | | eqid 2738 |
. 2
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
3 | | eqid 2738 |
. 2
⊢ (
·𝑠 ‘𝑂) = ( ·𝑠
‘𝑂) |
4 | | eqid 2738 |
. 2
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
5 | | eqid 2738 |
. 2
⊢
(Scalar‘𝑂) =
(Scalar‘𝑂) |
6 | | eqid 2738 |
. 2
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
7 | | lmhmlmod1 19924 |
. . 3
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod) |
8 | 7 | adantl 485 |
. 2
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod) |
9 | | lmhmlmod2 19923 |
. . 3
⊢ (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝑂 ∈ LMod) |
10 | 9 | adantr 484 |
. 2
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑂 ∈ LMod) |
11 | | eqid 2738 |
. . . 4
⊢
(Scalar‘𝑁) =
(Scalar‘𝑁) |
12 | 11, 5 | lmhmsca 19921 |
. . 3
⊢ (𝐹 ∈ (𝑁 LMHom 𝑂) → (Scalar‘𝑂) = (Scalar‘𝑁)) |
13 | 4, 11 | lmhmsca 19921 |
. . 3
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀)) |
14 | 12, 13 | sylan9eq 2793 |
. 2
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑂) = (Scalar‘𝑀)) |
15 | | lmghm 19922 |
. . 3
⊢ (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝐹 ∈ (𝑁 GrpHom 𝑂)) |
16 | | lmghm 19922 |
. . 3
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁)) |
17 | | ghmco 18496 |
. . 3
⊢ ((𝐹 ∈ (𝑁 GrpHom 𝑂) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 GrpHom 𝑂)) |
18 | 15, 16, 17 | syl2an 599 |
. 2
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 GrpHom 𝑂)) |
19 | | simplr 769 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁)) |
20 | | simprl 771 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀))) |
21 | | simprr 773 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) |
22 | | eqid 2738 |
. . . . . . 7
⊢ (
·𝑠 ‘𝑁) = ( ·𝑠
‘𝑁) |
23 | 4, 6, 1, 2, 22 | lmhmlin 19926 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) |
24 | 19, 20, 21, 23 | syl3anc 1372 |
. . . . 5
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) |
25 | 24 | fveq2d 6678 |
. . . 4
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦))) = (𝐹‘(𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦)))) |
26 | | simpll 767 |
. . . . 5
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑁 LMHom 𝑂)) |
27 | 13 | fveq2d 6678 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) =
(Base‘(Scalar‘𝑀))) |
28 | 27 | ad2antlr 727 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) =
(Base‘(Scalar‘𝑀))) |
29 | 20, 28 | eleqtrrd 2836 |
. . . . 5
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁))) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑁) =
(Base‘𝑁) |
31 | 1, 30 | lmhmf 19925 |
. . . . . . . 8
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
32 | 31 | adantl 485 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
33 | 32 | ffvelrnda 6861 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
34 | 33 | adantrl 716 |
. . . . 5
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
35 | | eqid 2738 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁)) |
36 | 11, 35, 30, 22, 3 | lmhmlin 19926 |
. . . . 5
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐺‘𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) = (𝑥( ·𝑠
‘𝑂)(𝐹‘(𝐺‘𝑦)))) |
37 | 26, 29, 34, 36 | syl3anc 1372 |
. . . 4
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) = (𝑥( ·𝑠
‘𝑂)(𝐹‘(𝐺‘𝑦)))) |
38 | 25, 37 | eqtrd 2773 |
. . 3
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦))) = (𝑥( ·𝑠
‘𝑂)(𝐹‘(𝐺‘𝑦)))) |
39 | 32 | ffnd 6505 |
. . . 4
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 Fn (Base‘𝑀)) |
40 | 7 | ad2antlr 727 |
. . . . 5
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod) |
41 | 1, 4, 2, 6 | lmodvscl 19770 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀)) |
42 | 40, 20, 21, 41 | syl3anc 1372 |
. . . 4
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀)) |
43 | | fvco2 6765 |
. . . 4
⊢ ((𝐺 Fn (Base‘𝑀) ∧ (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀)) → ((𝐹 ∘ 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)))) |
44 | 39, 42, 43 | syl2an2r 685 |
. . 3
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘ 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)))) |
45 | | fvco2 6765 |
. . . . 5
⊢ ((𝐺 Fn (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
46 | 39, 21, 45 | syl2an2r 685 |
. . . 4
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘ 𝐺)‘𝑦) = (𝐹‘(𝐺‘𝑦))) |
47 | 46 | oveq2d 7186 |
. . 3
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠
‘𝑂)((𝐹 ∘ 𝐺)‘𝑦)) = (𝑥( ·𝑠
‘𝑂)(𝐹‘(𝐺‘𝑦)))) |
48 | 38, 44, 47 | 3eqtr4d 2783 |
. 2
⊢ (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘ 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑂)((𝐹 ∘ 𝐺)‘𝑦))) |
49 | 1, 2, 3, 4, 5, 6, 8, 10, 14, 18, 48 | islmhmd 19930 |
1
⊢ ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘ 𝐺) ∈ (𝑀 LMHom 𝑂)) |