MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmco Structured version   Visualization version   GIF version

Theorem lmhmco 19814
Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015.)
Assertion
Ref Expression
lmhmco ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))

Proof of Theorem lmhmco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2821 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2821 . 2 ( ·𝑠𝑂) = ( ·𝑠𝑂)
4 eqid 2821 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2821 . 2 (Scalar‘𝑂) = (Scalar‘𝑂)
6 eqid 2821 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 19804 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantl 484 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 19803 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝑂 ∈ LMod)
109adantr 483 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑂 ∈ LMod)
11 eqid 2821 . . . 4 (Scalar‘𝑁) = (Scalar‘𝑁)
1211, 5lmhmsca 19801 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → (Scalar‘𝑂) = (Scalar‘𝑁))
134, 11lmhmsca 19801 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1412, 13sylan9eq 2876 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑂) = (Scalar‘𝑀))
15 lmghm 19802 . . 3 (𝐹 ∈ (𝑁 LMHom 𝑂) → 𝐹 ∈ (𝑁 GrpHom 𝑂))
16 lmghm 19802 . . 3 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
17 ghmco 18377 . . 3 ((𝐹 ∈ (𝑁 GrpHom 𝑂) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
1815, 16, 17syl2an 597 . 2 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 GrpHom 𝑂))
19 simplr 767 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
20 simprl 769 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
21 simprr 771 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
22 eqid 2821 . . . . . . 7 ( ·𝑠𝑁) = ( ·𝑠𝑁)
234, 6, 1, 2, 22lmhmlin 19806 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2419, 20, 21, 23syl3anc 1367 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2524fveq2d 6673 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))))
26 simpll 765 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑁 LMHom 𝑂))
2713fveq2d 6673 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2827ad2antlr 725 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
2920, 28eleqtrrd 2916 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
30 eqid 2821 . . . . . . . . 9 (Base‘𝑁) = (Base‘𝑁)
311, 30lmhmf 19805 . . . . . . . 8 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3231adantl 484 . . . . . . 7 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
3332ffvelrnda 6850 . . . . . 6 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺𝑦) ∈ (Base‘𝑁))
3433adantrl 714 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
35 eqid 2821 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
3611, 35, 30, 22, 3lmhmlin 19806 . . . . 5 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐺𝑦) ∈ (Base‘𝑁)) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3726, 29, 34, 36syl3anc 1367 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑁)(𝐺𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3825, 37eqtrd 2856 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
3932ffnd 6514 . . . 4 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 Fn (Base‘𝑀))
407ad2antlr 725 . . . . 5 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
411, 4, 2, 6lmodvscl 19650 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
4240, 20, 21, 41syl3anc 1367 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
43 fvco2 6757 . . . 4 ((𝐺 Fn (Base‘𝑀) ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀)) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
4439, 42, 43syl2an2r 683 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝐹‘(𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
45 fvco2 6757 . . . . 5 ((𝐺 Fn (Base‘𝑀) ∧ 𝑦 ∈ (Base‘𝑀)) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4639, 21, 45syl2an2r 683 . . . 4 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘𝑦) = (𝐹‘(𝐺𝑦)))
4746oveq2d 7171 . . 3 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)) = (𝑥( ·𝑠𝑂)(𝐹‘(𝐺𝑦))))
4838, 44, 473eqtr4d 2866 . 2 (((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑂)((𝐹𝐺)‘𝑦)))
491, 2, 3, 4, 5, 6, 8, 10, 14, 18, 48islmhmd 19810 1 ((𝐹 ∈ (𝑁 LMHom 𝑂) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹𝐺) ∈ (𝑀 LMHom 𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  ccom 5558   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  Basecbs 16482  Scalarcsca 16567   ·𝑠 cvsca 16568   GrpHom cghm 18354  LModclmod 19633   LMHom clmhm 19790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-map 8407  df-0g 16714  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-ghm 18355  df-lmod 19635  df-lmhm 19793
This theorem is referenced by:  lmimco  20987  nmhmco  23364  mendring  39790
  Copyright terms: Public domain W3C validator