MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2 Structured version   Visualization version   GIF version

Theorem reslmhm2 20230
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))

Proof of Theorem reslmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2738 . 2 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2738 . 2 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4 eqid 2738 . 2 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2738 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2738 . 2 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 20210 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod)
873ad2ant1 1131 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑆 ∈ LMod)
9 simp2 1135 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑇 ∈ LMod)
10 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
1110, 5resssca 16978 . . . 4 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
12113ad2ant3 1133 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈))
13 eqid 2738 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
144, 13lmhmsca 20207 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆))
15143ad2ant1 1131 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆))
1612, 15eqtrd 2778 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆))
17 lmghm 20208 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
18173ad2ant1 1131 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
19 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
2019lsssubg 20134 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
21203adant1 1128 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2210resghm2 18766 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2318, 21, 22syl2anc 583 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2738 . . . . . 6 ( ·𝑠𝑈) = ( ·𝑠𝑈)
254, 6, 1, 2, 24lmhmlin 20212 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
26253expb 1118 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
27263ad2antl1 1183 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
28 simpl3 1191 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
2910, 3ressvsca 16979 . . . . 5 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3029oveqd 7272 . . . 4 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3128, 30syl 17 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3227, 31eqtr4d 2781 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
331, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32islmhmd 20216 1 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  s cress 16867  Scalarcsca 16891   ·𝑠 cvsca 16892  SubGrpcsubg 18664   GrpHom cghm 18746  LModclmod 20038  LSubSpclss 20108   LMHom clmhm 20196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-sca 16904  df-vsca 16905  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lss 20109  df-lmhm 20199
This theorem is referenced by:  reslmhm2b  20231
  Copyright terms: Public domain W3C validator