Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reslmhm2 | Structured version Visualization version GIF version |
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
reslmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
reslmhm2.l | ⊢ 𝐿 = (LSubSp‘𝑇) |
Ref | Expression |
---|---|
reslmhm2 | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
3 | eqid 2738 | . 2 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
4 | eqid 2738 | . 2 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2738 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | eqid 2738 | . 2 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
7 | lmhmlmod1 20305 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod) | |
8 | 7 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑆 ∈ LMod) |
9 | simp2 1136 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑇 ∈ LMod) | |
10 | reslmhm2.u | . . . . 5 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
11 | 10, 5 | resssca 17063 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
12 | 11 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
13 | eqid 2738 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
14 | 4, 13 | lmhmsca 20302 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
16 | 12, 15 | eqtrd 2778 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
17 | lmghm 20303 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | |
18 | 17 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
19 | reslmhm2.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑇) | |
20 | 19 | lsssubg 20229 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
21 | 20 | 3adant1 1129 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
22 | 10 | resghm2 18861 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
23 | 18, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
24 | eqid 2738 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
25 | 4, 6, 1, 2, 24 | lmhmlin 20307 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
26 | 25 | 3expb 1119 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
27 | 26 | 3ad2antl1 1184 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
28 | simpl3 1192 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) | |
29 | 10, 3 | ressvsca 17064 | . . . . 5 ⊢ (𝑋 ∈ 𝐿 → ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑈)) |
30 | 29 | oveqd 7284 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
31 | 28, 30 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
32 | 27, 31 | eqtr4d 2781 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦))) |
33 | 1, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32 | islmhmd 20311 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ‘cfv 6426 (class class class)co 7267 Basecbs 16922 ↾s cress 16951 Scalarcsca 16975 ·𝑠 cvsca 16976 SubGrpcsubg 18759 GrpHom cghm 18841 LModclmod 20133 LSubSpclss 20203 LMHom clmhm 20291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-plusg 16985 df-sca 16988 df-vsca 16989 df-0g 17162 df-mgm 18336 df-sgrp 18385 df-mnd 18396 df-mhm 18440 df-submnd 18441 df-grp 18590 df-minusg 18591 df-sbg 18592 df-subg 18762 df-ghm 18842 df-mgp 19731 df-ur 19748 df-ring 19795 df-lmod 20135 df-lss 20204 df-lmhm 20294 |
This theorem is referenced by: reslmhm2b 20326 |
Copyright terms: Public domain | W3C validator |