![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reslmhm2 | Structured version Visualization version GIF version |
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
reslmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
reslmhm2.l | ⊢ 𝐿 = (LSubSp‘𝑇) |
Ref | Expression |
---|---|
reslmhm2 | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
3 | eqid 2735 | . 2 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
4 | eqid 2735 | . 2 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2735 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | eqid 2735 | . 2 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
7 | lmhmlmod1 21050 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod) | |
8 | 7 | 3ad2ant1 1132 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑆 ∈ LMod) |
9 | simp2 1136 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑇 ∈ LMod) | |
10 | reslmhm2.u | . . . . 5 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
11 | 10, 5 | resssca 17389 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
12 | 11 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
13 | eqid 2735 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
14 | 4, 13 | lmhmsca 21047 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
15 | 14 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
16 | 12, 15 | eqtrd 2775 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
17 | lmghm 21048 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | |
18 | 17 | 3ad2ant1 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
19 | reslmhm2.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑇) | |
20 | 19 | lsssubg 20973 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
21 | 20 | 3adant1 1129 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
22 | 10 | resghm2 19264 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
23 | 18, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
24 | eqid 2735 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
25 | 4, 6, 1, 2, 24 | lmhmlin 21052 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
26 | 25 | 3expb 1119 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
27 | 26 | 3ad2antl1 1184 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
28 | simpl3 1192 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) | |
29 | 10, 3 | ressvsca 17390 | . . . . 5 ⊢ (𝑋 ∈ 𝐿 → ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑈)) |
30 | 29 | oveqd 7448 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
31 | 28, 30 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
32 | 27, 31 | eqtr4d 2778 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦))) |
33 | 1, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32 | islmhmd 21056 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 ↾s cress 17274 Scalarcsca 17301 ·𝑠 cvsca 17302 SubGrpcsubg 19151 GrpHom cghm 19243 LModclmod 20875 LSubSpclss 20947 LMHom clmhm 21036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-map 8867 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-sca 17314 df-vsca 17315 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-subg 19154 df-ghm 19244 df-mgp 20153 df-ur 20200 df-ring 20253 df-lmod 20877 df-lss 20948 df-lmhm 21039 |
This theorem is referenced by: reslmhm2b 21071 |
Copyright terms: Public domain | W3C validator |