MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2 Structured version   Visualization version   GIF version

Theorem reslmhm2 20967
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))

Proof of Theorem reslmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2730 . 2 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2730 . 2 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4 eqid 2730 . 2 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2730 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2730 . 2 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 20947 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod)
873ad2ant1 1133 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑆 ∈ LMod)
9 simp2 1137 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑇 ∈ LMod)
10 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
1110, 5resssca 17313 . . . 4 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
12113ad2ant3 1135 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈))
13 eqid 2730 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
144, 13lmhmsca 20944 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆))
15143ad2ant1 1133 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆))
1612, 15eqtrd 2765 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆))
17 lmghm 20945 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
18173ad2ant1 1133 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
19 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
2019lsssubg 20870 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
21203adant1 1130 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2210resghm2 19172 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2318, 21, 22syl2anc 584 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2730 . . . . . 6 ( ·𝑠𝑈) = ( ·𝑠𝑈)
254, 6, 1, 2, 24lmhmlin 20949 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
26253expb 1120 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
27263ad2antl1 1186 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
28 simpl3 1194 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
2910, 3ressvsca 17314 . . . . 5 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3029oveqd 7407 . . . 4 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3128, 30syl 17 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3227, 31eqtr4d 2768 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
331, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32islmhmd 20953 1 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6514  (class class class)co 7390  Basecbs 17186  s cress 17207  Scalarcsca 17230   ·𝑠 cvsca 17231  SubGrpcsubg 19059   GrpHom cghm 19151  LModclmod 20773  LSubSpclss 20844   LMHom clmhm 20933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-sca 17243  df-vsca 17244  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-ghm 19152  df-mgp 20057  df-ur 20098  df-ring 20151  df-lmod 20775  df-lss 20845  df-lmhm 20936
This theorem is referenced by:  reslmhm2b  20968
  Copyright terms: Public domain W3C validator