| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reslmhm2 | Structured version Visualization version GIF version | ||
| Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| reslmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| reslmhm2.l | ⊢ 𝐿 = (LSubSp‘𝑇) |
| Ref | Expression |
|---|---|
| reslmhm2 | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 3 | eqid 2731 | . 2 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
| 4 | eqid 2731 | . 2 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 5 | eqid 2731 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 6 | eqid 2731 | . 2 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
| 7 | lmhmlmod1 20965 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod) | |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑆 ∈ LMod) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑇 ∈ LMod) | |
| 10 | reslmhm2.u | . . . . 5 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
| 11 | 10, 5 | resssca 17244 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 13 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 14 | 4, 13 | lmhmsca 20962 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
| 16 | 12, 15 | eqtrd 2766 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 17 | lmghm 20963 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
| 19 | reslmhm2.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑇) | |
| 20 | 19 | lsssubg 20888 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 22 | 10 | resghm2 19143 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 23 | 18, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 24 | eqid 2731 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 25 | 4, 6, 1, 2, 24 | lmhmlin 20967 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 26 | 25 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 27 | 26 | 3ad2antl1 1186 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 28 | simpl3 1194 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) | |
| 29 | 10, 3 | ressvsca 17245 | . . . . 5 ⊢ (𝑋 ∈ 𝐿 → ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑈)) |
| 30 | 29 | oveqd 7363 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 31 | 28, 30 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 32 | 27, 31 | eqtr4d 2769 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦))) |
| 33 | 1, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32 | islmhmd 20971 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 ↾s cress 17138 Scalarcsca 17161 ·𝑠 cvsca 17162 SubGrpcsubg 19030 GrpHom cghm 19122 LModclmod 20791 LSubSpclss 20862 LMHom clmhm 20951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-sets 17072 df-slot 17090 df-ndx 17102 df-base 17118 df-ress 17139 df-plusg 17171 df-sca 17174 df-vsca 17175 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-submnd 18689 df-grp 18846 df-minusg 18847 df-sbg 18848 df-subg 19033 df-ghm 19123 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20793 df-lss 20863 df-lmhm 20954 |
| This theorem is referenced by: reslmhm2b 20986 |
| Copyright terms: Public domain | W3C validator |