MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reslmhm2 Structured version   Visualization version   GIF version

Theorem reslmhm2 20989
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.)
Hypotheses
Ref Expression
reslmhm2.u 𝑈 = (𝑇s 𝑋)
reslmhm2.l 𝐿 = (LSubSp‘𝑇)
Assertion
Ref Expression
reslmhm2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))

Proof of Theorem reslmhm2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2733 . 2 ( ·𝑠𝑆) = ( ·𝑠𝑆)
3 eqid 2733 . 2 ( ·𝑠𝑇) = ( ·𝑠𝑇)
4 eqid 2733 . 2 (Scalar‘𝑆) = (Scalar‘𝑆)
5 eqid 2733 . 2 (Scalar‘𝑇) = (Scalar‘𝑇)
6 eqid 2733 . 2 (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆))
7 lmhmlmod1 20969 . . 3 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod)
873ad2ant1 1133 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑆 ∈ LMod)
9 simp2 1137 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑇 ∈ LMod)
10 reslmhm2.u . . . . 5 𝑈 = (𝑇s 𝑋)
1110, 5resssca 17249 . . . 4 (𝑋𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈))
12113ad2ant3 1135 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈))
13 eqid 2733 . . . . 5 (Scalar‘𝑈) = (Scalar‘𝑈)
144, 13lmhmsca 20966 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆))
15143ad2ant1 1133 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆))
1612, 15eqtrd 2768 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆))
17 lmghm 20967 . . . 4 (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
18173ad2ant1 1133 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈))
19 reslmhm2.l . . . . 5 𝐿 = (LSubSp‘𝑇)
2019lsssubg 20892 . . . 4 ((𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
21203adant1 1130 . . 3 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝑋 ∈ (SubGrp‘𝑇))
2210resghm2 19147 . . 3 ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
2318, 21, 22syl2anc 584 . 2 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇))
24 eqid 2733 . . . . . 6 ( ·𝑠𝑈) = ( ·𝑠𝑈)
254, 6, 1, 2, 24lmhmlin 20971 . . . . 5 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
26253expb 1120 . . . 4 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
27263ad2antl1 1186 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
28 simpl3 1194 . . . 4 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋𝐿)
2910, 3ressvsca 17250 . . . . 5 (𝑋𝐿 → ( ·𝑠𝑇) = ( ·𝑠𝑈))
3029oveqd 7369 . . . 4 (𝑋𝐿 → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3128, 30syl 17 . . 3 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠𝑇)(𝐹𝑦)) = (𝑥( ·𝑠𝑈)(𝐹𝑦)))
3227, 31eqtr4d 2771 . 2 (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠𝑆)𝑦)) = (𝑥( ·𝑠𝑇)(𝐹𝑦)))
331, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32islmhmd 20975 1 ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  s cress 17143  Scalarcsca 17166   ·𝑠 cvsca 17167  SubGrpcsubg 19035   GrpHom cghm 19126  LModclmod 20795  LSubSpclss 20866   LMHom clmhm 20955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-sca 17179  df-vsca 17180  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-subg 19038  df-ghm 19127  df-mgp 20061  df-ur 20102  df-ring 20155  df-lmod 20797  df-lss 20867  df-lmhm 20958
This theorem is referenced by:  reslmhm2b  20990
  Copyright terms: Public domain W3C validator