| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > reslmhm2 | Structured version Visualization version GIF version | ||
| Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
| Ref | Expression |
|---|---|
| reslmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
| reslmhm2.l | ⊢ 𝐿 = (LSubSp‘𝑇) |
| Ref | Expression |
|---|---|
| reslmhm2 | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2736 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
| 3 | eqid 2736 | . 2 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
| 4 | eqid 2736 | . 2 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
| 5 | eqid 2736 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
| 6 | eqid 2736 | . 2 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
| 7 | lmhmlmod1 20996 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod) | |
| 8 | 7 | 3ad2ant1 1133 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑆 ∈ LMod) |
| 9 | simp2 1137 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑇 ∈ LMod) | |
| 10 | reslmhm2.u | . . . . 5 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
| 11 | 10, 5 | resssca 17362 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
| 13 | eqid 2736 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
| 14 | 4, 13 | lmhmsca 20993 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
| 15 | 14 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
| 16 | 12, 15 | eqtrd 2771 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
| 17 | lmghm 20994 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
| 19 | reslmhm2.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑇) | |
| 20 | 19 | lsssubg 20919 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 21 | 20 | 3adant1 1130 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
| 22 | 10 | resghm2 19221 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 23 | 18, 21, 22 | syl2anc 584 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
| 24 | eqid 2736 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
| 25 | 4, 6, 1, 2, 24 | lmhmlin 20998 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 26 | 25 | 3expb 1120 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 27 | 26 | 3ad2antl1 1186 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 28 | simpl3 1194 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) | |
| 29 | 10, 3 | ressvsca 17363 | . . . . 5 ⊢ (𝑋 ∈ 𝐿 → ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑈)) |
| 30 | 29 | oveqd 7427 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 31 | 28, 30 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
| 32 | 27, 31 | eqtr4d 2774 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦))) |
| 33 | 1, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32 | islmhmd 21002 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 ↾s cress 17256 Scalarcsca 17279 ·𝑠 cvsca 17280 SubGrpcsubg 19108 GrpHom cghm 19200 LModclmod 20822 LSubSpclss 20893 LMHom clmhm 20982 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-sca 17292 df-vsca 17293 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-ghm 19201 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-lss 20894 df-lmhm 20985 |
| This theorem is referenced by: reslmhm2b 21017 |
| Copyright terms: Public domain | W3C validator |