![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reslmhm2 | Structured version Visualization version GIF version |
Description: Expansion of the codomain of a homomorphism. (Contributed by Stefan O'Rear, 3-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
Ref | Expression |
---|---|
reslmhm2.u | ⊢ 𝑈 = (𝑇 ↾s 𝑋) |
reslmhm2.l | ⊢ 𝐿 = (LSubSp‘𝑇) |
Ref | Expression |
---|---|
reslmhm2 | ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
2 | eqid 2725 | . 2 ⊢ ( ·𝑠 ‘𝑆) = ( ·𝑠 ‘𝑆) | |
3 | eqid 2725 | . 2 ⊢ ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑇) | |
4 | eqid 2725 | . 2 ⊢ (Scalar‘𝑆) = (Scalar‘𝑆) | |
5 | eqid 2725 | . 2 ⊢ (Scalar‘𝑇) = (Scalar‘𝑇) | |
6 | eqid 2725 | . 2 ⊢ (Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) | |
7 | lmhmlmod1 20930 | . . 3 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝑆 ∈ LMod) | |
8 | 7 | 3ad2ant1 1130 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑆 ∈ LMod) |
9 | simp2 1134 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑇 ∈ LMod) | |
10 | reslmhm2.u | . . . . 5 ⊢ 𝑈 = (𝑇 ↾s 𝑋) | |
11 | 10, 5 | resssca 17327 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (Scalar‘𝑇) = (Scalar‘𝑈)) |
12 | 11 | 3ad2ant3 1132 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑈)) |
13 | eqid 2725 | . . . . 5 ⊢ (Scalar‘𝑈) = (Scalar‘𝑈) | |
14 | 4, 13 | lmhmsca 20927 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
15 | 14 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑈) = (Scalar‘𝑆)) |
16 | 12, 15 | eqtrd 2765 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → (Scalar‘𝑇) = (Scalar‘𝑆)) |
17 | lmghm 20928 | . . . 4 ⊢ (𝐹 ∈ (𝑆 LMHom 𝑈) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | |
18 | 17 | 3ad2ant1 1130 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
19 | reslmhm2.l | . . . . 5 ⊢ 𝐿 = (LSubSp‘𝑇) | |
20 | 19 | lsssubg 20853 | . . . 4 ⊢ ((𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
21 | 20 | 3adant1 1127 | . . 3 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝑋 ∈ (SubGrp‘𝑇)) |
22 | 10 | resghm2 19196 | . . 3 ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
23 | 18, 21, 22 | syl2anc 582 | . 2 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
24 | eqid 2725 | . . . . . 6 ⊢ ( ·𝑠 ‘𝑈) = ( ·𝑠 ‘𝑈) | |
25 | 4, 6, 1, 2, 24 | lmhmlin 20932 | . . . . 5 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
26 | 25 | 3expb 1117 | . . . 4 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
27 | 26 | 3ad2antl1 1182 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
28 | simpl3 1190 | . . . 4 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → 𝑋 ∈ 𝐿) | |
29 | 10, 3 | ressvsca 17328 | . . . . 5 ⊢ (𝑋 ∈ 𝐿 → ( ·𝑠 ‘𝑇) = ( ·𝑠 ‘𝑈)) |
30 | 29 | oveqd 7436 | . . . 4 ⊢ (𝑋 ∈ 𝐿 → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
31 | 28, 30 | syl 17 | . . 3 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦)) = (𝑥( ·𝑠 ‘𝑈)(𝐹‘𝑦))) |
32 | 27, 31 | eqtr4d 2768 | . 2 ⊢ (((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑆)) ∧ 𝑦 ∈ (Base‘𝑆))) → (𝐹‘(𝑥( ·𝑠 ‘𝑆)𝑦)) = (𝑥( ·𝑠 ‘𝑇)(𝐹‘𝑦))) |
33 | 1, 2, 3, 4, 5, 6, 8, 9, 16, 23, 32 | islmhmd 20936 | 1 ⊢ ((𝐹 ∈ (𝑆 LMHom 𝑈) ∧ 𝑇 ∈ LMod ∧ 𝑋 ∈ 𝐿) → 𝐹 ∈ (𝑆 LMHom 𝑇)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 ↾s cress 17212 Scalarcsca 17239 ·𝑠 cvsca 17240 SubGrpcsubg 19083 GrpHom cghm 19175 LModclmod 20755 LSubSpclss 20827 LMHom clmhm 20916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-sca 17252 df-vsca 17253 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-subg 19086 df-ghm 19176 df-mgp 20087 df-ur 20134 df-ring 20187 df-lmod 20757 df-lss 20828 df-lmhm 20919 |
This theorem is referenced by: reslmhm2b 20951 |
Copyright terms: Public domain | W3C validator |