Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β π β LMod) |
2 | | simpr 485 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β πΊ β πΉ) |
3 | | lfl0.d |
. . . . . . 7
β’ π· = (Scalarβπ) |
4 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ·) =
(Baseβπ·) |
5 | | eqid 2732 |
. . . . . . 7
β’
(1rβπ·) = (1rβπ·) |
6 | 3, 4, 5 | lmod1cl 20491 |
. . . . . 6
β’ (π β LMod β
(1rβπ·)
β (Baseβπ·)) |
7 | 6 | adantr 481 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β (1rβπ·) β (Baseβπ·)) |
8 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
9 | | lfl0.z |
. . . . . . 7
β’ π = (0gβπ) |
10 | 8, 9 | lmod0vcl 20493 |
. . . . . 6
β’ (π β LMod β π β (Baseβπ)) |
11 | 10 | adantr 481 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β π β (Baseβπ)) |
12 | | eqid 2732 |
. . . . . 6
β’
(+gβπ) = (+gβπ) |
13 | | eqid 2732 |
. . . . . 6
β’ (
Β·π βπ) = ( Β·π
βπ) |
14 | | eqid 2732 |
. . . . . 6
β’
(+gβπ·) = (+gβπ·) |
15 | | eqid 2732 |
. . . . . 6
β’
(.rβπ·) = (.rβπ·) |
16 | | lfl0.f |
. . . . . 6
β’ πΉ = (LFnlβπ) |
17 | 8, 12, 3, 13, 4, 14, 15, 16 | lfli 37919 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ β§ ((1rβπ·) β (Baseβπ·) β§ π β (Baseβπ) β§ π β (Baseβπ))) β (πΊβ(((1rβπ·)(
Β·π βπ)π)(+gβπ)π)) = (((1rβπ·)(.rβπ·)(πΊβπ))(+gβπ·)(πΊβπ))) |
18 | 1, 2, 7, 11, 11, 17 | syl113anc 1382 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ) β (πΊβ(((1rβπ·)(
Β·π βπ)π)(+gβπ)π)) = (((1rβπ·)(.rβπ·)(πΊβπ))(+gβπ·)(πΊβπ))) |
19 | 8, 3, 13, 4 | lmodvscl 20481 |
. . . . . . . 8
β’ ((π β LMod β§
(1rβπ·)
β (Baseβπ·) β§
π β (Baseβπ)) β
((1rβπ·)(
Β·π βπ)π) β (Baseβπ)) |
20 | 1, 7, 11, 19 | syl3anc 1371 |
. . . . . . 7
β’ ((π β LMod β§ πΊ β πΉ) β ((1rβπ·)(
Β·π βπ)π) β (Baseβπ)) |
21 | 8, 12, 9 | lmod0vrid 20495 |
. . . . . . 7
β’ ((π β LMod β§
((1rβπ·)(
Β·π βπ)π) β (Baseβπ)) β (((1rβπ·)(
Β·π βπ)π)(+gβπ)π) = ((1rβπ·)( Β·π
βπ)π)) |
22 | 20, 21 | syldan 591 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ) β (((1rβπ·)(
Β·π βπ)π)(+gβπ)π) = ((1rβπ·)( Β·π
βπ)π)) |
23 | 8, 3, 13, 5 | lmodvs1 20492 |
. . . . . . 7
β’ ((π β LMod β§ π β (Baseβπ)) β
((1rβπ·)(
Β·π βπ)π) = π) |
24 | 11, 23 | syldan 591 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ) β ((1rβπ·)(
Β·π βπ)π) = π) |
25 | 22, 24 | eqtrd 2772 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β (((1rβπ·)(
Β·π βπ)π)(+gβπ)π) = π) |
26 | 25 | fveq2d 6892 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ) β (πΊβ(((1rβπ·)(
Β·π βπ)π)(+gβπ)π)) = (πΊβπ)) |
27 | 3 | lmodring 20471 |
. . . . . . 7
β’ (π β LMod β π· β Ring) |
28 | 27 | adantr 481 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ) β π· β Ring) |
29 | 3, 4, 8, 16 | lflcl 37922 |
. . . . . . 7
β’ ((π β LMod β§ πΊ β πΉ β§ π β (Baseβπ)) β (πΊβπ) β (Baseβπ·)) |
30 | 11, 29 | mpd3an3 1462 |
. . . . . 6
β’ ((π β LMod β§ πΊ β πΉ) β (πΊβπ) β (Baseβπ·)) |
31 | 4, 15, 5 | ringlidm 20079 |
. . . . . 6
β’ ((π· β Ring β§ (πΊβπ) β (Baseβπ·)) β ((1rβπ·)(.rβπ·)(πΊβπ)) = (πΊβπ)) |
32 | 28, 30, 31 | syl2anc 584 |
. . . . 5
β’ ((π β LMod β§ πΊ β πΉ) β ((1rβπ·)(.rβπ·)(πΊβπ)) = (πΊβπ)) |
33 | 32 | oveq1d 7420 |
. . . 4
β’ ((π β LMod β§ πΊ β πΉ) β (((1rβπ·)(.rβπ·)(πΊβπ))(+gβπ·)(πΊβπ)) = ((πΊβπ)(+gβπ·)(πΊβπ))) |
34 | 18, 26, 33 | 3eqtr3d 2780 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ) β (πΊβπ) = ((πΊβπ)(+gβπ·)(πΊβπ))) |
35 | 34 | oveq1d 7420 |
. 2
β’ ((π β LMod β§ πΊ β πΉ) β ((πΊβπ)(-gβπ·)(πΊβπ)) = (((πΊβπ)(+gβπ·)(πΊβπ))(-gβπ·)(πΊβπ))) |
36 | | ringgrp 20054 |
. . . 4
β’ (π· β Ring β π· β Grp) |
37 | 28, 36 | syl 17 |
. . 3
β’ ((π β LMod β§ πΊ β πΉ) β π· β Grp) |
38 | | lfl0.o |
. . . 4
β’ 0 =
(0gβπ·) |
39 | | eqid 2732 |
. . . 4
β’
(-gβπ·) = (-gβπ·) |
40 | 4, 38, 39 | grpsubid 18903 |
. . 3
β’ ((π· β Grp β§ (πΊβπ) β (Baseβπ·)) β ((πΊβπ)(-gβπ·)(πΊβπ)) = 0 ) |
41 | 37, 30, 40 | syl2anc 584 |
. 2
β’ ((π β LMod β§ πΊ β πΉ) β ((πΊβπ)(-gβπ·)(πΊβπ)) = 0 ) |
42 | 4, 14, 39 | grppncan 18910 |
. . 3
β’ ((π· β Grp β§ (πΊβπ) β (Baseβπ·) β§ (πΊβπ) β (Baseβπ·)) β (((πΊβπ)(+gβπ·)(πΊβπ))(-gβπ·)(πΊβπ)) = (πΊβπ)) |
43 | 37, 30, 30, 42 | syl3anc 1371 |
. 2
β’ ((π β LMod β§ πΊ β πΉ) β (((πΊβπ)(+gβπ·)(πΊβπ))(-gβπ·)(πΊβπ)) = (πΊβπ)) |
44 | 35, 41, 43 | 3eqtr3rd 2781 |
1
β’ ((π β LMod β§ πΊ β πΉ) β (πΊβπ) = 0 ) |