Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0 Structured version   Visualization version   GIF version

Theorem lfl0 38399
Description: A linear functional is zero at the zero vector. (lnfn0i 31728 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lfl0.d 𝐷 = (Scalar‘𝑊)
lfl0.o 0 = (0g𝐷)
lfl0.z 𝑍 = (0g𝑊)
lfl0.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )

Proof of Theorem lfl0
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
2 simpr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺𝐹)
3 lfl0.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
4 eqid 2731 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2731 . . . . . . 7 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20731 . . . . . 6 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
76adantr 480 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (1r𝐷) ∈ (Base‘𝐷))
8 eqid 2731 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
9 lfl0.z . . . . . . 7 𝑍 = (0g𝑊)
108, 9lmod0vcl 20733 . . . . . 6 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝑊))
1110adantr 480 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑍 ∈ (Base‘𝑊))
12 eqid 2731 . . . . . 6 (+g𝑊) = (+g𝑊)
13 eqid 2731 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2731 . . . . . 6 (+g𝐷) = (+g𝐷)
15 eqid 2731 . . . . . 6 (.r𝐷) = (.r𝐷)
16 lfl0.f . . . . . 6 𝐹 = (LFnl‘𝑊)
178, 12, 3, 13, 4, 14, 15, 16lfli 38395 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊) ∧ 𝑍 ∈ (Base‘𝑊))) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
181, 2, 7, 11, 11, 17syl113anc 1381 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
198, 3, 13, 4lmodvscl 20720 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
201, 7, 11, 19syl3anc 1370 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
218, 12, 9lmod0vrid 20735 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊)) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
2220, 21syldan 590 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
238, 3, 13, 5lmodvs1 20732 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2411, 23syldan 590 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2522, 24eqtrd 2771 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = 𝑍)
2625fveq2d 6895 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (𝐺𝑍))
273lmodring 20710 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2827adantr 480 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Ring)
293, 4, 8, 16lflcl 38398 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑍 ∈ (Base‘𝑊)) → (𝐺𝑍) ∈ (Base‘𝐷))
3011, 29mpd3an3 1461 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) ∈ (Base‘𝐷))
314, 15, 5ringlidm 20164 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3228, 30, 31syl2anc 583 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3332oveq1d 7427 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3418, 26, 333eqtr3d 2779 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3534oveq1d 7427 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)))
36 ringgrp 20139 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
3728, 36syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Grp)
38 lfl0.o . . . 4 0 = (0g𝐷)
39 eqid 2731 . . . 4 (-g𝐷) = (-g𝐷)
404, 38, 39grpsubid 18950 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
4137, 30, 40syl2anc 583 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
424, 14, 39grppncan 18957 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷) ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4337, 30, 30, 42syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4435, 41, 433eqtr3rd 2780 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  cfv 6543  (class class class)co 7412  Basecbs 17151  +gcplusg 17204  .rcmulr 17205  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  Grpcgrp 18861  -gcsg 18863  1rcur 20082  Ringcrg 20134  LModclmod 20702  LFnlclfn 38391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-nn 12220  df-2 12282  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-plusg 17217  df-0g 17394  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-grp 18864  df-minusg 18865  df-sbg 18866  df-mgp 20036  df-ur 20083  df-ring 20136  df-lmod 20704  df-lfl 38392
This theorem is referenced by:  lflmul  38402  lkrlss  38429  dochkr1  40813  lcfrlem28  40905  hdmapip0  41250
  Copyright terms: Public domain W3C validator