Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0 Structured version   Visualization version   GIF version

Theorem lfl0 37079
Description: A linear functional is zero at the zero vector. (lnfn0i 30404 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lfl0.d 𝐷 = (Scalar‘𝑊)
lfl0.o 0 = (0g𝐷)
lfl0.z 𝑍 = (0g𝑊)
lfl0.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )

Proof of Theorem lfl0
StepHypRef Expression
1 simpl 483 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
2 simpr 485 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺𝐹)
3 lfl0.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
4 eqid 2738 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2738 . . . . . . 7 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 20150 . . . . . 6 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
76adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (1r𝐷) ∈ (Base‘𝐷))
8 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
9 lfl0.z . . . . . . 7 𝑍 = (0g𝑊)
108, 9lmod0vcl 20152 . . . . . 6 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝑊))
1110adantr 481 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑍 ∈ (Base‘𝑊))
12 eqid 2738 . . . . . 6 (+g𝑊) = (+g𝑊)
13 eqid 2738 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2738 . . . . . 6 (+g𝐷) = (+g𝐷)
15 eqid 2738 . . . . . 6 (.r𝐷) = (.r𝐷)
16 lfl0.f . . . . . 6 𝐹 = (LFnl‘𝑊)
178, 12, 3, 13, 4, 14, 15, 16lfli 37075 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊) ∧ 𝑍 ∈ (Base‘𝑊))) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
181, 2, 7, 11, 11, 17syl113anc 1381 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
198, 3, 13, 4lmodvscl 20140 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
201, 7, 11, 19syl3anc 1370 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
218, 12, 9lmod0vrid 20154 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊)) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
2220, 21syldan 591 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
238, 3, 13, 5lmodvs1 20151 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2411, 23syldan 591 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2522, 24eqtrd 2778 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = 𝑍)
2625fveq2d 6778 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (𝐺𝑍))
273lmodring 20131 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2827adantr 481 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Ring)
293, 4, 8, 16lflcl 37078 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑍 ∈ (Base‘𝑊)) → (𝐺𝑍) ∈ (Base‘𝐷))
3011, 29mpd3an3 1461 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) ∈ (Base‘𝐷))
314, 15, 5ringlidm 19810 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3228, 30, 31syl2anc 584 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3332oveq1d 7290 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3418, 26, 333eqtr3d 2786 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3534oveq1d 7290 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)))
36 ringgrp 19788 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
3728, 36syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Grp)
38 lfl0.o . . . 4 0 = (0g𝐷)
39 eqid 2738 . . . 4 (-g𝐷) = (-g𝐷)
404, 38, 39grpsubid 18659 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
4137, 30, 40syl2anc 584 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
424, 14, 39grppncan 18666 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷) ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4337, 30, 30, 42syl3anc 1370 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4435, 41, 433eqtr3rd 2787 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  0gc0g 17150  Grpcgrp 18577  -gcsg 18579  1rcur 19737  Ringcrg 19783  LModclmod 20123  LFnlclfn 37071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lfl 37072
This theorem is referenced by:  lflmul  37082  lkrlss  37109  dochkr1  39492  lcfrlem28  39584  hdmapip0  39929
  Copyright terms: Public domain W3C validator