Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl0 Structured version   Visualization version   GIF version

Theorem lfl0 36816
Description: A linear functional is zero at the zero vector. (lnfn0i 30123 analog.) (Contributed by NM, 16-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lfl0.d 𝐷 = (Scalar‘𝑊)
lfl0.o 0 = (0g𝐷)
lfl0.z 𝑍 = (0g𝑊)
lfl0.f 𝐹 = (LFnl‘𝑊)
Assertion
Ref Expression
lfl0 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )

Proof of Theorem lfl0
StepHypRef Expression
1 simpl 486 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑊 ∈ LMod)
2 simpr 488 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐺𝐹)
3 lfl0.d . . . . . . 7 𝐷 = (Scalar‘𝑊)
4 eqid 2737 . . . . . . 7 (Base‘𝐷) = (Base‘𝐷)
5 eqid 2737 . . . . . . 7 (1r𝐷) = (1r𝐷)
63, 4, 5lmod1cl 19926 . . . . . 6 (𝑊 ∈ LMod → (1r𝐷) ∈ (Base‘𝐷))
76adantr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (1r𝐷) ∈ (Base‘𝐷))
8 eqid 2737 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
9 lfl0.z . . . . . . 7 𝑍 = (0g𝑊)
108, 9lmod0vcl 19928 . . . . . 6 (𝑊 ∈ LMod → 𝑍 ∈ (Base‘𝑊))
1110adantr 484 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝑍 ∈ (Base‘𝑊))
12 eqid 2737 . . . . . 6 (+g𝑊) = (+g𝑊)
13 eqid 2737 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
14 eqid 2737 . . . . . 6 (+g𝐷) = (+g𝐷)
15 eqid 2737 . . . . . 6 (.r𝐷) = (.r𝐷)
16 lfl0.f . . . . . 6 𝐹 = (LFnl‘𝑊)
178, 12, 3, 13, 4, 14, 15, 16lfli 36812 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹 ∧ ((1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊) ∧ 𝑍 ∈ (Base‘𝑊))) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
181, 2, 7, 11, 11, 17syl113anc 1384 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)))
198, 3, 13, 4lmodvscl 19916 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (1r𝐷) ∈ (Base‘𝐷) ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
201, 7, 11, 19syl3anc 1373 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊))
218, 12, 9lmod0vrid 19930 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((1r𝐷)( ·𝑠𝑊)𝑍) ∈ (Base‘𝑊)) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
2220, 21syldan 594 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = ((1r𝐷)( ·𝑠𝑊)𝑍))
238, 3, 13, 5lmodvs1 19927 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑍 ∈ (Base‘𝑊)) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2411, 23syldan 594 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)( ·𝑠𝑊)𝑍) = 𝑍)
2522, 24eqtrd 2777 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍) = 𝑍)
2625fveq2d 6721 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺‘(((1r𝐷)( ·𝑠𝑊)𝑍)(+g𝑊)𝑍)) = (𝐺𝑍))
273lmodring 19907 . . . . . . 7 (𝑊 ∈ LMod → 𝐷 ∈ Ring)
2827adantr 484 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Ring)
293, 4, 8, 16lflcl 36815 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐺𝐹𝑍 ∈ (Base‘𝑊)) → (𝐺𝑍) ∈ (Base‘𝐷))
3011, 29mpd3an3 1464 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) ∈ (Base‘𝐷))
314, 15, 5ringlidm 19589 . . . . . 6 ((𝐷 ∈ Ring ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3228, 30, 31syl2anc 587 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((1r𝐷)(.r𝐷)(𝐺𝑍)) = (𝐺𝑍))
3332oveq1d 7228 . . . 4 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((1r𝐷)(.r𝐷)(𝐺𝑍))(+g𝐷)(𝐺𝑍)) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3418, 26, 333eqtr3d 2785 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = ((𝐺𝑍)(+g𝐷)(𝐺𝑍)))
3534oveq1d 7228 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)))
36 ringgrp 19567 . . . 4 (𝐷 ∈ Ring → 𝐷 ∈ Grp)
3728, 36syl 17 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → 𝐷 ∈ Grp)
38 lfl0.o . . . 4 0 = (0g𝐷)
39 eqid 2737 . . . 4 (-g𝐷) = (-g𝐷)
404, 38, 39grpsubid 18447 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
4137, 30, 40syl2anc 587 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐺𝑍)(-g𝐷)(𝐺𝑍)) = 0 )
424, 14, 39grppncan 18454 . . 3 ((𝐷 ∈ Grp ∧ (𝐺𝑍) ∈ (Base‘𝐷) ∧ (𝐺𝑍) ∈ (Base‘𝐷)) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4337, 30, 30, 42syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (((𝐺𝑍)(+g𝐷)(𝐺𝑍))(-g𝐷)(𝐺𝑍)) = (𝐺𝑍))
4435, 41, 433eqtr3rd 2786 1 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → (𝐺𝑍) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  Grpcgrp 18365  -gcsg 18367  1rcur 19516  Ringcrg 19562  LModclmod 19899  LFnlclfn 36808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mgp 19505  df-ur 19517  df-ring 19564  df-lmod 19901  df-lfl 36809
This theorem is referenced by:  lflmul  36819  lkrlss  36846  dochkr1  39229  lcfrlem28  39321  hdmapip0  39666
  Copyright terms: Public domain W3C validator