![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2j | Structured version Visualization version GIF version |
Description: Lemma for lclkr 40708. Kernel closure when π is zero. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | β’ π» = (LHypβπΎ) |
lclkrlem2f.o | β’ β₯ = ((ocHβπΎ)βπ) |
lclkrlem2f.u | β’ π = ((DVecHβπΎ)βπ) |
lclkrlem2f.v | β’ π = (Baseβπ) |
lclkrlem2f.s | β’ π = (Scalarβπ) |
lclkrlem2f.q | β’ π = (0gβπ) |
lclkrlem2f.z | β’ 0 = (0gβπ) |
lclkrlem2f.a | β’ β = (LSSumβπ) |
lclkrlem2f.n | β’ π = (LSpanβπ) |
lclkrlem2f.f | β’ πΉ = (LFnlβπ) |
lclkrlem2f.j | β’ π½ = (LSHypβπ) |
lclkrlem2f.l | β’ πΏ = (LKerβπ) |
lclkrlem2f.d | β’ π· = (LDualβπ) |
lclkrlem2f.p | β’ + = (+gβπ·) |
lclkrlem2f.k | β’ (π β (πΎ β HL β§ π β π»)) |
lclkrlem2f.b | β’ (π β π΅ β (π β { 0 })) |
lclkrlem2f.e | β’ (π β πΈ β πΉ) |
lclkrlem2f.g | β’ (π β πΊ β πΉ) |
lclkrlem2f.le | β’ (π β (πΏβπΈ) = ( β₯ β{π})) |
lclkrlem2f.lg | β’ (π β (πΏβπΊ) = ( β₯ β{π})) |
lclkrlem2f.kb | β’ (π β ((πΈ + πΊ)βπ΅) = π) |
lclkrlem2f.nx | β’ (π β (Β¬ π β ( β₯ β{π΅}) β¨ Β¬ π β ( β₯ β{π΅}))) |
lclkrlem2j.x | β’ (π β π β π) |
lclkrlem2j.y | β’ (π β π = 0 ) |
Ref | Expression |
---|---|
lclkrlem2j | β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.k | . . 3 β’ (π β (πΎ β HL β§ π β π»)) | |
2 | lclkrlem2j.x | . . . . 5 β’ (π β π β π) | |
3 | 2 | snssd 4812 | . . . 4 β’ (π β {π} β π) |
4 | lclkrlem2f.h | . . . . 5 β’ π» = (LHypβπΎ) | |
5 | eqid 2731 | . . . . 5 β’ ((DIsoHβπΎ)βπ) = ((DIsoHβπΎ)βπ) | |
6 | lclkrlem2f.u | . . . . 5 β’ π = ((DVecHβπΎ)βπ) | |
7 | lclkrlem2f.v | . . . . 5 β’ π = (Baseβπ) | |
8 | lclkrlem2f.o | . . . . 5 β’ β₯ = ((ocHβπΎ)βπ) | |
9 | 4, 5, 6, 7, 8 | dochcl 40528 | . . . 4 β’ (((πΎ β HL β§ π β π») β§ {π} β π) β ( β₯ β{π}) β ran ((DIsoHβπΎ)βπ)) |
10 | 1, 3, 9 | syl2anc 583 | . . 3 β’ (π β ( β₯ β{π}) β ran ((DIsoHβπΎ)βπ)) |
11 | 4, 5, 8 | dochoc 40542 | . . 3 β’ (((πΎ β HL β§ π β π») β§ ( β₯ β{π}) β ran ((DIsoHβπΎ)βπ)) β ( β₯ β( β₯ β( β₯ β{π}))) = ( β₯ β{π})) |
12 | 1, 10, 11 | syl2anc 583 | . 2 β’ (π β ( β₯ β( β₯ β( β₯ β{π}))) = ( β₯ β{π})) |
13 | lclkrlem2f.lg | . . . . . . . . . . 11 β’ (π β (πΏβπΊ) = ( β₯ β{π})) | |
14 | lclkrlem2j.y | . . . . . . . . . . . . 13 β’ (π β π = 0 ) | |
15 | 14 | sneqd 4640 | . . . . . . . . . . . 12 β’ (π β {π} = { 0 }) |
16 | 15 | fveq2d 6895 | . . . . . . . . . . 11 β’ (π β ( β₯ β{π}) = ( β₯ β{ 0 })) |
17 | eqid 2731 | . . . . . . . . . . . . 13 β’ (Baseβπ) = (Baseβπ) | |
18 | lclkrlem2f.z | . . . . . . . . . . . . 13 β’ 0 = (0gβπ) | |
19 | 4, 6, 8, 17, 18 | doch0 40533 | . . . . . . . . . . . 12 β’ ((πΎ β HL β§ π β π») β ( β₯ β{ 0 }) = (Baseβπ)) |
20 | 1, 19 | syl 17 | . . . . . . . . . . 11 β’ (π β ( β₯ β{ 0 }) = (Baseβπ)) |
21 | 13, 16, 20 | 3eqtrd 2775 | . . . . . . . . . 10 β’ (π β (πΏβπΊ) = (Baseβπ)) |
22 | 4, 6, 1 | dvhlmod 40285 | . . . . . . . . . . 11 β’ (π β π β LMod) |
23 | lclkrlem2f.g | . . . . . . . . . . 11 β’ (π β πΊ β πΉ) | |
24 | lclkrlem2f.s | . . . . . . . . . . . 12 β’ π = (Scalarβπ) | |
25 | lclkrlem2f.q | . . . . . . . . . . . 12 β’ π = (0gβπ) | |
26 | lclkrlem2f.f | . . . . . . . . . . . 12 β’ πΉ = (LFnlβπ) | |
27 | lclkrlem2f.l | . . . . . . . . . . . 12 β’ πΏ = (LKerβπ) | |
28 | 24, 25, 17, 26, 27 | lkr0f 38268 | . . . . . . . . . . 11 β’ ((π β LMod β§ πΊ β πΉ) β ((πΏβπΊ) = (Baseβπ) β πΊ = ((Baseβπ) Γ {π}))) |
29 | 22, 23, 28 | syl2anc 583 | . . . . . . . . . 10 β’ (π β ((πΏβπΊ) = (Baseβπ) β πΊ = ((Baseβπ) Γ {π}))) |
30 | 21, 29 | mpbid 231 | . . . . . . . . 9 β’ (π β πΊ = ((Baseβπ) Γ {π})) |
31 | lclkrlem2f.d | . . . . . . . . . 10 β’ π· = (LDualβπ) | |
32 | eqid 2731 | . . . . . . . . . 10 β’ (0gβπ·) = (0gβπ·) | |
33 | 17, 24, 25, 31, 32, 22 | ldual0v 38324 | . . . . . . . . 9 β’ (π β (0gβπ·) = ((Baseβπ) Γ {π})) |
34 | 30, 33 | eqtr4d 2774 | . . . . . . . 8 β’ (π β πΊ = (0gβπ·)) |
35 | 34 | oveq2d 7428 | . . . . . . 7 β’ (π β (πΈ + πΊ) = (πΈ + (0gβπ·))) |
36 | 31, 22 | lduallmod 38327 | . . . . . . . 8 β’ (π β π· β LMod) |
37 | eqid 2731 | . . . . . . . . 9 β’ (Baseβπ·) = (Baseβπ·) | |
38 | lclkrlem2f.e | . . . . . . . . 9 β’ (π β πΈ β πΉ) | |
39 | 26, 31, 37, 22, 38 | ldualelvbase 38301 | . . . . . . . 8 β’ (π β πΈ β (Baseβπ·)) |
40 | lclkrlem2f.p | . . . . . . . . 9 β’ + = (+gβπ·) | |
41 | 37, 40, 32 | lmod0vrid 20648 | . . . . . . . 8 β’ ((π· β LMod β§ πΈ β (Baseβπ·)) β (πΈ + (0gβπ·)) = πΈ) |
42 | 36, 39, 41 | syl2anc 583 | . . . . . . 7 β’ (π β (πΈ + (0gβπ·)) = πΈ) |
43 | 35, 42 | eqtrd 2771 | . . . . . 6 β’ (π β (πΈ + πΊ) = πΈ) |
44 | 43 | fveq2d 6895 | . . . . 5 β’ (π β (πΏβ(πΈ + πΊ)) = (πΏβπΈ)) |
45 | lclkrlem2f.le | . . . . 5 β’ (π β (πΏβπΈ) = ( β₯ β{π})) | |
46 | 44, 45 | eqtr2d 2772 | . . . 4 β’ (π β ( β₯ β{π}) = (πΏβ(πΈ + πΊ))) |
47 | 46 | fveq2d 6895 | . . 3 β’ (π β ( β₯ β( β₯ β{π})) = ( β₯ β(πΏβ(πΈ + πΊ)))) |
48 | 47 | fveq2d 6895 | . 2 β’ (π β ( β₯ β( β₯ β( β₯ β{π}))) = ( β₯ β( β₯ β(πΏβ(πΈ + πΊ))))) |
49 | 12, 48, 46 | 3eqtr3d 2779 | 1 β’ (π β ( β₯ β( β₯ β(πΏβ(πΈ + πΊ)))) = (πΏβ(πΈ + πΊ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β wb 205 β§ wa 395 β¨ wo 844 = wceq 1540 β wcel 2105 β cdif 3945 β wss 3948 {csn 4628 Γ cxp 5674 ran crn 5677 βcfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 0gc0g 17390 LSSumclsm 19544 LModclmod 20615 LSpanclspn 20727 LSHypclsh 38149 LFnlclfn 38231 LKerclk 38259 LDualcld 38297 HLchlt 38524 LHypclh 39159 DVecHcdvh 40253 DIsoHcdih 40403 ocHcoch 40522 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 ax-riotaBAD 38127 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8215 df-undef 8262 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-0g 17392 df-proset 18253 df-poset 18271 df-plt 18288 df-lub 18304 df-glb 18305 df-join 18306 df-meet 18307 df-p0 18383 df-p1 18384 df-lat 18390 df-clat 18457 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-sbg 18861 df-subg 19040 df-cntz 19223 df-lsm 19546 df-cmn 19692 df-abl 19693 df-mgp 20030 df-rng 20048 df-ur 20077 df-ring 20130 df-oppr 20226 df-dvdsr 20249 df-unit 20250 df-invr 20280 df-dvr 20293 df-drng 20503 df-lmod 20617 df-lss 20688 df-lsp 20728 df-lvec 20859 df-lfl 38232 df-lkr 38260 df-ldual 38298 df-oposet 38350 df-ol 38352 df-oml 38353 df-covers 38440 df-ats 38441 df-atl 38472 df-cvlat 38496 df-hlat 38525 df-llines 38673 df-lplanes 38674 df-lvols 38675 df-lines 38676 df-psubsp 38678 df-pmap 38679 df-padd 38971 df-lhyp 39163 df-laut 39164 df-ldil 39279 df-ltrn 39280 df-trl 39334 df-tendo 39930 df-edring 39932 df-disoa 40204 df-dvech 40254 df-dib 40314 df-dic 40348 df-dih 40404 df-doch 40523 |
This theorem is referenced by: lclkrlem2k 40692 lclkrlem2l 40693 |
Copyright terms: Public domain | W3C validator |