![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2j | Structured version Visualization version GIF version |
Description: Lemma for lclkr 37671. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
lclkrlem2j.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2j.y | ⊢ (𝜑 → 𝑌 = 0 ) |
Ref | Expression |
---|---|
lclkrlem2j | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | lclkrlem2j.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | snssd 4571 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
4 | lclkrlem2f.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | eqid 2777 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
6 | lclkrlem2f.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lclkrlem2f.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | lclkrlem2f.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 4, 5, 6, 7, 8 | dochcl 37491 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
10 | 1, 3, 9 | syl2anc 579 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
11 | 4, 5, 8 | dochoc 37505 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
12 | 1, 10, 11 | syl2anc 579 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
13 | lclkrlem2f.lg | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
14 | lclkrlem2j.y | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑌 = 0 ) | |
15 | 14 | sneqd 4409 | . . . . . . . . . . . 12 ⊢ (𝜑 → {𝑌} = { 0 }) |
16 | 15 | fveq2d 6450 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) = ( ⊥ ‘{ 0 })) |
17 | eqid 2777 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
18 | lclkrlem2f.z | . . . . . . . . . . . . 13 ⊢ 0 = (0g‘𝑈) | |
19 | 4, 6, 8, 17, 18 | doch0 37496 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
20 | 1, 19 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
21 | 13, 16, 20 | 3eqtrd 2817 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘𝐺) = (Base‘𝑈)) |
22 | 4, 6, 1 | dvhlmod 37248 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
23 | lclkrlem2f.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
24 | lclkrlem2f.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑈) | |
25 | lclkrlem2f.q | . . . . . . . . . . . 12 ⊢ 𝑄 = (0g‘𝑆) | |
26 | lclkrlem2f.f | . . . . . . . . . . . 12 ⊢ 𝐹 = (LFnl‘𝑈) | |
27 | lclkrlem2f.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
28 | 24, 25, 17, 26, 27 | lkr0f 35232 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
29 | 22, 23, 28 | syl2anc 579 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
30 | 21, 29 | mpbid 224 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 = ((Base‘𝑈) × {𝑄})) |
31 | lclkrlem2f.d | . . . . . . . . . 10 ⊢ 𝐷 = (LDual‘𝑈) | |
32 | eqid 2777 | . . . . . . . . . 10 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
33 | 17, 24, 25, 31, 32, 22 | ldual0v 35288 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝐷) = ((Base‘𝑈) × {𝑄})) |
34 | 30, 33 | eqtr4d 2816 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (0g‘𝐷)) |
35 | 34 | oveq2d 6938 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + 𝐺) = (𝐸 + (0g‘𝐷))) |
36 | 31, 22 | lduallmod 35291 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ LMod) |
37 | eqid 2777 | . . . . . . . . 9 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
38 | lclkrlem2f.e | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
39 | 26, 31, 37, 22, 38 | ldualelvbase 35265 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐷)) |
40 | lclkrlem2f.p | . . . . . . . . 9 ⊢ + = (+g‘𝐷) | |
41 | 37, 40, 32 | lmod0vrid 19286 | . . . . . . . 8 ⊢ ((𝐷 ∈ LMod ∧ 𝐸 ∈ (Base‘𝐷)) → (𝐸 + (0g‘𝐷)) = 𝐸) |
42 | 36, 39, 41 | syl2anc 579 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + (0g‘𝐷)) = 𝐸) |
43 | 35, 42 | eqtrd 2813 | . . . . . 6 ⊢ (𝜑 → (𝐸 + 𝐺) = 𝐸) |
44 | 43 | fveq2d 6450 | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = (𝐿‘𝐸)) |
45 | lclkrlem2f.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
46 | 44, 45 | eqtr2d 2814 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺))) |
47 | 46 | fveq2d 6450 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) |
48 | 47 | fveq2d 6450 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺))))) |
49 | 12, 48, 46 | 3eqtr3d 2821 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 386 ∨ wo 836 = wceq 1601 ∈ wcel 2106 ∖ cdif 3788 ⊆ wss 3791 {csn 4397 × cxp 5353 ran crn 5356 ‘cfv 6135 (class class class)co 6922 Basecbs 16255 +gcplusg 16338 Scalarcsca 16341 0gc0g 16486 LSSumclsm 18433 LModclmod 19255 LSpanclspn 19366 LSHypclsh 35113 LFnlclfn 35195 LKerclk 35223 LDualcld 35261 HLchlt 35488 LHypclh 36122 DVecHcdvh 37216 DIsoHcdih 37366 ocHcoch 37485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-8 2108 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-riotaBAD 35091 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3399 df-sbc 3652 df-csb 3751 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-pss 3807 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-tpos 7634 df-undef 7681 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-oadd 7847 df-er 8026 df-map 8142 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-n0 11643 df-z 11729 df-uz 11993 df-fz 12644 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-sca 16354 df-vsca 16355 df-0g 16488 df-proset 17314 df-poset 17332 df-plt 17344 df-lub 17360 df-glb 17361 df-join 17362 df-meet 17363 df-p0 17425 df-p1 17426 df-lat 17432 df-clat 17494 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-grp 17812 df-minusg 17813 df-sbg 17814 df-subg 17975 df-cntz 18133 df-lsm 18435 df-cmn 18581 df-abl 18582 df-mgp 18877 df-ur 18889 df-ring 18936 df-oppr 19010 df-dvdsr 19028 df-unit 19029 df-invr 19059 df-dvr 19070 df-drng 19141 df-lmod 19257 df-lss 19325 df-lsp 19367 df-lvec 19498 df-lfl 35196 df-lkr 35224 df-ldual 35262 df-oposet 35314 df-ol 35316 df-oml 35317 df-covers 35404 df-ats 35405 df-atl 35436 df-cvlat 35460 df-hlat 35489 df-llines 35636 df-lplanes 35637 df-lvols 35638 df-lines 35639 df-psubsp 35641 df-pmap 35642 df-padd 35934 df-lhyp 36126 df-laut 36127 df-ldil 36242 df-ltrn 36243 df-trl 36297 df-tendo 36893 df-edring 36895 df-disoa 37167 df-dvech 37217 df-dib 37277 df-dic 37311 df-dih 37367 df-doch 37486 |
This theorem is referenced by: lclkrlem2k 37655 lclkrlem2l 37656 |
Copyright terms: Public domain | W3C validator |