Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2j | Structured version Visualization version GIF version |
Description: Lemma for lclkr 39852. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
lclkrlem2j.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2j.y | ⊢ (𝜑 → 𝑌 = 0 ) |
Ref | Expression |
---|---|
lclkrlem2j | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | lclkrlem2j.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | snssd 4757 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
4 | lclkrlem2f.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | eqid 2736 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
6 | lclkrlem2f.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lclkrlem2f.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | lclkrlem2f.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 4, 5, 6, 7, 8 | dochcl 39672 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
10 | 1, 3, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
11 | 4, 5, 8 | dochoc 39686 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
12 | 1, 10, 11 | syl2anc 584 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
13 | lclkrlem2f.lg | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
14 | lclkrlem2j.y | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑌 = 0 ) | |
15 | 14 | sneqd 4586 | . . . . . . . . . . . 12 ⊢ (𝜑 → {𝑌} = { 0 }) |
16 | 15 | fveq2d 6830 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) = ( ⊥ ‘{ 0 })) |
17 | eqid 2736 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
18 | lclkrlem2f.z | . . . . . . . . . . . . 13 ⊢ 0 = (0g‘𝑈) | |
19 | 4, 6, 8, 17, 18 | doch0 39677 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
20 | 1, 19 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
21 | 13, 16, 20 | 3eqtrd 2780 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘𝐺) = (Base‘𝑈)) |
22 | 4, 6, 1 | dvhlmod 39429 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
23 | lclkrlem2f.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
24 | lclkrlem2f.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑈) | |
25 | lclkrlem2f.q | . . . . . . . . . . . 12 ⊢ 𝑄 = (0g‘𝑆) | |
26 | lclkrlem2f.f | . . . . . . . . . . . 12 ⊢ 𝐹 = (LFnl‘𝑈) | |
27 | lclkrlem2f.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
28 | 24, 25, 17, 26, 27 | lkr0f 37412 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
29 | 22, 23, 28 | syl2anc 584 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
30 | 21, 29 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 = ((Base‘𝑈) × {𝑄})) |
31 | lclkrlem2f.d | . . . . . . . . . 10 ⊢ 𝐷 = (LDual‘𝑈) | |
32 | eqid 2736 | . . . . . . . . . 10 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
33 | 17, 24, 25, 31, 32, 22 | ldual0v 37468 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝐷) = ((Base‘𝑈) × {𝑄})) |
34 | 30, 33 | eqtr4d 2779 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (0g‘𝐷)) |
35 | 34 | oveq2d 7354 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + 𝐺) = (𝐸 + (0g‘𝐷))) |
36 | 31, 22 | lduallmod 37471 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ LMod) |
37 | eqid 2736 | . . . . . . . . 9 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
38 | lclkrlem2f.e | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
39 | 26, 31, 37, 22, 38 | ldualelvbase 37445 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐷)) |
40 | lclkrlem2f.p | . . . . . . . . 9 ⊢ + = (+g‘𝐷) | |
41 | 37, 40, 32 | lmod0vrid 20261 | . . . . . . . 8 ⊢ ((𝐷 ∈ LMod ∧ 𝐸 ∈ (Base‘𝐷)) → (𝐸 + (0g‘𝐷)) = 𝐸) |
42 | 36, 39, 41 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + (0g‘𝐷)) = 𝐸) |
43 | 35, 42 | eqtrd 2776 | . . . . . 6 ⊢ (𝜑 → (𝐸 + 𝐺) = 𝐸) |
44 | 43 | fveq2d 6830 | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = (𝐿‘𝐸)) |
45 | lclkrlem2f.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
46 | 44, 45 | eqtr2d 2777 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺))) |
47 | 46 | fveq2d 6830 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) |
48 | 47 | fveq2d 6830 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺))))) |
49 | 12, 48, 46 | 3eqtr3d 2784 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1540 ∈ wcel 2105 ∖ cdif 3895 ⊆ wss 3898 {csn 4574 × cxp 5619 ran crn 5622 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 +gcplusg 17060 Scalarcsca 17063 0gc0g 17248 LSSumclsm 19336 LModclmod 20230 LSpanclspn 20340 LSHypclsh 37293 LFnlclfn 37375 LKerclk 37403 LDualcld 37441 HLchlt 37668 LHypclh 38303 DVecHcdvh 39397 DIsoHcdih 39547 ocHcoch 39666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 ax-riotaBAD 37271 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-iin 4945 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-of 7596 df-om 7782 df-1st 7900 df-2nd 7901 df-tpos 8113 df-undef 8160 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-er 8570 df-map 8689 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-n0 12336 df-z 12422 df-uz 12685 df-fz 13342 df-struct 16946 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-0g 17250 df-proset 18111 df-poset 18129 df-plt 18146 df-lub 18162 df-glb 18163 df-join 18164 df-meet 18165 df-p0 18241 df-p1 18242 df-lat 18248 df-clat 18315 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-submnd 18529 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-cntz 19020 df-lsm 19338 df-cmn 19484 df-abl 19485 df-mgp 19817 df-ur 19834 df-ring 19881 df-oppr 19958 df-dvdsr 19979 df-unit 19980 df-invr 20010 df-dvr 20021 df-drng 20096 df-lmod 20232 df-lss 20301 df-lsp 20341 df-lvec 20472 df-lfl 37376 df-lkr 37404 df-ldual 37442 df-oposet 37494 df-ol 37496 df-oml 37497 df-covers 37584 df-ats 37585 df-atl 37616 df-cvlat 37640 df-hlat 37669 df-llines 37817 df-lplanes 37818 df-lvols 37819 df-lines 37820 df-psubsp 37822 df-pmap 37823 df-padd 38115 df-lhyp 38307 df-laut 38308 df-ldil 38423 df-ltrn 38424 df-trl 38478 df-tendo 39074 df-edring 39076 df-disoa 39348 df-dvech 39398 df-dib 39458 df-dic 39492 df-dih 39548 df-doch 39667 |
This theorem is referenced by: lclkrlem2k 39836 lclkrlem2l 39837 |
Copyright terms: Public domain | W3C validator |