![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lclkrlem2j | Structured version Visualization version GIF version |
Description: Lemma for lclkr 41243. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.) |
Ref | Expression |
---|---|
lclkrlem2f.h | ⊢ 𝐻 = (LHyp‘𝐾) |
lclkrlem2f.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
lclkrlem2f.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
lclkrlem2f.v | ⊢ 𝑉 = (Base‘𝑈) |
lclkrlem2f.s | ⊢ 𝑆 = (Scalar‘𝑈) |
lclkrlem2f.q | ⊢ 𝑄 = (0g‘𝑆) |
lclkrlem2f.z | ⊢ 0 = (0g‘𝑈) |
lclkrlem2f.a | ⊢ ⊕ = (LSSum‘𝑈) |
lclkrlem2f.n | ⊢ 𝑁 = (LSpan‘𝑈) |
lclkrlem2f.f | ⊢ 𝐹 = (LFnl‘𝑈) |
lclkrlem2f.j | ⊢ 𝐽 = (LSHyp‘𝑈) |
lclkrlem2f.l | ⊢ 𝐿 = (LKer‘𝑈) |
lclkrlem2f.d | ⊢ 𝐷 = (LDual‘𝑈) |
lclkrlem2f.p | ⊢ + = (+g‘𝐷) |
lclkrlem2f.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
lclkrlem2f.b | ⊢ (𝜑 → 𝐵 ∈ (𝑉 ∖ { 0 })) |
lclkrlem2f.e | ⊢ (𝜑 → 𝐸 ∈ 𝐹) |
lclkrlem2f.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
lclkrlem2f.le | ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) |
lclkrlem2f.lg | ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) |
lclkrlem2f.kb | ⊢ (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄) |
lclkrlem2f.nx | ⊢ (𝜑 → (¬ 𝑋 ∈ ( ⊥ ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ⊥ ‘{𝐵}))) |
lclkrlem2j.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lclkrlem2j.y | ⊢ (𝜑 → 𝑌 = 0 ) |
Ref | Expression |
---|---|
lclkrlem2j | ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lclkrlem2f.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
2 | lclkrlem2j.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
3 | 2 | snssd 4809 | . . . 4 ⊢ (𝜑 → {𝑋} ⊆ 𝑉) |
4 | lclkrlem2f.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | eqid 2726 | . . . . 5 ⊢ ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊) | |
6 | lclkrlem2f.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | lclkrlem2f.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
8 | lclkrlem2f.o | . . . . 5 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
9 | 4, 5, 6, 7, 8 | dochcl 41063 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
10 | 1, 3, 9 | syl2anc 582 | . . 3 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) |
11 | 4, 5, 8 | dochoc 41077 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ( ⊥ ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
12 | 1, 10, 11 | syl2anc 582 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘{𝑋})) |
13 | lclkrlem2f.lg | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘𝐺) = ( ⊥ ‘{𝑌})) | |
14 | lclkrlem2j.y | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑌 = 0 ) | |
15 | 14 | sneqd 4636 | . . . . . . . . . . . 12 ⊢ (𝜑 → {𝑌} = { 0 }) |
16 | 15 | fveq2d 6895 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{𝑌}) = ( ⊥ ‘{ 0 })) |
17 | eqid 2726 | . . . . . . . . . . . . 13 ⊢ (Base‘𝑈) = (Base‘𝑈) | |
18 | lclkrlem2f.z | . . . . . . . . . . . . 13 ⊢ 0 = (0g‘𝑈) | |
19 | 4, 6, 8, 17, 18 | doch0 41068 | . . . . . . . . . . . 12 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
20 | 1, 19 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → ( ⊥ ‘{ 0 }) = (Base‘𝑈)) |
21 | 13, 16, 20 | 3eqtrd 2770 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘𝐺) = (Base‘𝑈)) |
22 | 4, 6, 1 | dvhlmod 40820 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
23 | lclkrlem2f.g | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
24 | lclkrlem2f.s | . . . . . . . . . . . 12 ⊢ 𝑆 = (Scalar‘𝑈) | |
25 | lclkrlem2f.q | . . . . . . . . . . . 12 ⊢ 𝑄 = (0g‘𝑆) | |
26 | lclkrlem2f.f | . . . . . . . . . . . 12 ⊢ 𝐹 = (LFnl‘𝑈) | |
27 | lclkrlem2f.l | . . . . . . . . . . . 12 ⊢ 𝐿 = (LKer‘𝑈) | |
28 | 24, 25, 17, 26, 27 | lkr0f 38803 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐺 ∈ 𝐹) → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
29 | 22, 23, 28 | syl2anc 582 | . . . . . . . . . 10 ⊢ (𝜑 → ((𝐿‘𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄}))) |
30 | 21, 29 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 = ((Base‘𝑈) × {𝑄})) |
31 | lclkrlem2f.d | . . . . . . . . . 10 ⊢ 𝐷 = (LDual‘𝑈) | |
32 | eqid 2726 | . . . . . . . . . 10 ⊢ (0g‘𝐷) = (0g‘𝐷) | |
33 | 17, 24, 25, 31, 32, 22 | ldual0v 38859 | . . . . . . . . 9 ⊢ (𝜑 → (0g‘𝐷) = ((Base‘𝑈) × {𝑄})) |
34 | 30, 33 | eqtr4d 2769 | . . . . . . . 8 ⊢ (𝜑 → 𝐺 = (0g‘𝐷)) |
35 | 34 | oveq2d 7430 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + 𝐺) = (𝐸 + (0g‘𝐷))) |
36 | 31, 22 | lduallmod 38862 | . . . . . . . 8 ⊢ (𝜑 → 𝐷 ∈ LMod) |
37 | eqid 2726 | . . . . . . . . 9 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
38 | lclkrlem2f.e | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝐹) | |
39 | 26, 31, 37, 22, 38 | ldualelvbase 38836 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ (Base‘𝐷)) |
40 | lclkrlem2f.p | . . . . . . . . 9 ⊢ + = (+g‘𝐷) | |
41 | 37, 40, 32 | lmod0vrid 20863 | . . . . . . . 8 ⊢ ((𝐷 ∈ LMod ∧ 𝐸 ∈ (Base‘𝐷)) → (𝐸 + (0g‘𝐷)) = 𝐸) |
42 | 36, 39, 41 | syl2anc 582 | . . . . . . 7 ⊢ (𝜑 → (𝐸 + (0g‘𝐷)) = 𝐸) |
43 | 35, 42 | eqtrd 2766 | . . . . . 6 ⊢ (𝜑 → (𝐸 + 𝐺) = 𝐸) |
44 | 43 | fveq2d 6895 | . . . . 5 ⊢ (𝜑 → (𝐿‘(𝐸 + 𝐺)) = (𝐿‘𝐸)) |
45 | lclkrlem2f.le | . . . . 5 ⊢ (𝜑 → (𝐿‘𝐸) = ( ⊥ ‘{𝑋})) | |
46 | 44, 45 | eqtr2d 2767 | . . . 4 ⊢ (𝜑 → ( ⊥ ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺))) |
47 | 46 | fveq2d 6895 | . . 3 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘{𝑋})) = ( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) |
48 | 47 | fveq2d 6895 | . 2 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘( ⊥ ‘{𝑋}))) = ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺))))) |
49 | 12, 48, 46 | 3eqtr3d 2774 | 1 ⊢ (𝜑 → ( ⊥ ‘( ⊥ ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∖ cdif 3944 ⊆ wss 3947 {csn 4624 × cxp 5671 ran crn 5674 ‘cfv 6544 (class class class)co 7414 Basecbs 17206 +gcplusg 17259 Scalarcsca 17262 0gc0g 17447 LSSumclsm 19626 LModclmod 20830 LSpanclspn 20942 LSHypclsh 38684 LFnlclfn 38766 LKerclk 38794 LDualcld 38832 HLchlt 39059 LHypclh 39694 DVecHcdvh 40788 DIsoHcdih 40938 ocHcoch 41057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 ax-riotaBAD 38662 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3365 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4907 df-int 4948 df-iun 4996 df-iin 4997 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8231 df-undef 8278 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-n0 12517 df-z 12603 df-uz 12867 df-fz 13531 df-struct 17142 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-ress 17236 df-plusg 17272 df-mulr 17273 df-sca 17275 df-vsca 17276 df-0g 17449 df-proset 18313 df-poset 18331 df-plt 18348 df-lub 18364 df-glb 18365 df-join 18366 df-meet 18367 df-p0 18443 df-p1 18444 df-lat 18450 df-clat 18517 df-mgm 18626 df-sgrp 18705 df-mnd 18721 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-lsm 19628 df-cmn 19774 df-abl 19775 df-mgp 20112 df-rng 20130 df-ur 20159 df-ring 20212 df-oppr 20310 df-dvdsr 20333 df-unit 20334 df-invr 20364 df-dvr 20377 df-drng 20703 df-lmod 20832 df-lss 20903 df-lsp 20943 df-lvec 21075 df-lfl 38767 df-lkr 38795 df-ldual 38833 df-oposet 38885 df-ol 38887 df-oml 38888 df-covers 38975 df-ats 38976 df-atl 39007 df-cvlat 39031 df-hlat 39060 df-llines 39208 df-lplanes 39209 df-lvols 39210 df-lines 39211 df-psubsp 39213 df-pmap 39214 df-padd 39506 df-lhyp 39698 df-laut 39699 df-ldil 39814 df-ltrn 39815 df-trl 39869 df-tendo 40465 df-edring 40467 df-disoa 40739 df-dvech 40789 df-dib 40849 df-dic 40883 df-dih 40939 df-doch 41058 |
This theorem is referenced by: lclkrlem2k 41227 lclkrlem2l 41228 |
Copyright terms: Public domain | W3C validator |