Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lclkrlem2j Structured version   Visualization version   GIF version

Theorem lclkrlem2j 39835
Description: Lemma for lclkr 39852. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.)
Hypotheses
Ref Expression
lclkrlem2f.h 𝐻 = (LHyp‘𝐾)
lclkrlem2f.o = ((ocH‘𝐾)‘𝑊)
lclkrlem2f.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
lclkrlem2f.v 𝑉 = (Base‘𝑈)
lclkrlem2f.s 𝑆 = (Scalar‘𝑈)
lclkrlem2f.q 𝑄 = (0g𝑆)
lclkrlem2f.z 0 = (0g𝑈)
lclkrlem2f.a = (LSSum‘𝑈)
lclkrlem2f.n 𝑁 = (LSpan‘𝑈)
lclkrlem2f.f 𝐹 = (LFnl‘𝑈)
lclkrlem2f.j 𝐽 = (LSHyp‘𝑈)
lclkrlem2f.l 𝐿 = (LKer‘𝑈)
lclkrlem2f.d 𝐷 = (LDual‘𝑈)
lclkrlem2f.p + = (+g𝐷)
lclkrlem2f.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
lclkrlem2f.b (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))
lclkrlem2f.e (𝜑𝐸𝐹)
lclkrlem2f.g (𝜑𝐺𝐹)
lclkrlem2f.le (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
lclkrlem2f.lg (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
lclkrlem2f.kb (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)
lclkrlem2f.nx (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))
lclkrlem2j.x (𝜑𝑋𝑉)
lclkrlem2j.y (𝜑𝑌 = 0 )
Assertion
Ref Expression
lclkrlem2j (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))

Proof of Theorem lclkrlem2j
StepHypRef Expression
1 lclkrlem2f.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 lclkrlem2j.x . . . . 5 (𝜑𝑋𝑉)
32snssd 4757 . . . 4 (𝜑 → {𝑋} ⊆ 𝑉)
4 lclkrlem2f.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 eqid 2736 . . . . 5 ((DIsoH‘𝐾)‘𝑊) = ((DIsoH‘𝐾)‘𝑊)
6 lclkrlem2f.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 lclkrlem2f.v . . . . 5 𝑉 = (Base‘𝑈)
8 lclkrlem2f.o . . . . 5 = ((ocH‘𝐾)‘𝑊)
94, 5, 6, 7, 8dochcl 39672 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝑋} ⊆ 𝑉) → ( ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
101, 3, 9syl2anc 584 . . 3 (𝜑 → ( ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊))
114, 5, 8dochoc 39686 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ( ‘{𝑋}) ∈ ran ((DIsoH‘𝐾)‘𝑊)) → ( ‘( ‘( ‘{𝑋}))) = ( ‘{𝑋}))
121, 10, 11syl2anc 584 . 2 (𝜑 → ( ‘( ‘( ‘{𝑋}))) = ( ‘{𝑋}))
13 lclkrlem2f.lg . . . . . . . . . . 11 (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))
14 lclkrlem2j.y . . . . . . . . . . . . 13 (𝜑𝑌 = 0 )
1514sneqd 4586 . . . . . . . . . . . 12 (𝜑 → {𝑌} = { 0 })
1615fveq2d 6830 . . . . . . . . . . 11 (𝜑 → ( ‘{𝑌}) = ( ‘{ 0 }))
17 eqid 2736 . . . . . . . . . . . . 13 (Base‘𝑈) = (Base‘𝑈)
18 lclkrlem2f.z . . . . . . . . . . . . 13 0 = (0g𝑈)
194, 6, 8, 17, 18doch0 39677 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( ‘{ 0 }) = (Base‘𝑈))
201, 19syl 17 . . . . . . . . . . 11 (𝜑 → ( ‘{ 0 }) = (Base‘𝑈))
2113, 16, 203eqtrd 2780 . . . . . . . . . 10 (𝜑 → (𝐿𝐺) = (Base‘𝑈))
224, 6, 1dvhlmod 39429 . . . . . . . . . . 11 (𝜑𝑈 ∈ LMod)
23 lclkrlem2f.g . . . . . . . . . . 11 (𝜑𝐺𝐹)
24 lclkrlem2f.s . . . . . . . . . . . 12 𝑆 = (Scalar‘𝑈)
25 lclkrlem2f.q . . . . . . . . . . . 12 𝑄 = (0g𝑆)
26 lclkrlem2f.f . . . . . . . . . . . 12 𝐹 = (LFnl‘𝑈)
27 lclkrlem2f.l . . . . . . . . . . . 12 𝐿 = (LKer‘𝑈)
2824, 25, 17, 26, 27lkr0f 37412 . . . . . . . . . . 11 ((𝑈 ∈ LMod ∧ 𝐺𝐹) → ((𝐿𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄})))
2922, 23, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → ((𝐿𝐺) = (Base‘𝑈) ↔ 𝐺 = ((Base‘𝑈) × {𝑄})))
3021, 29mpbid 231 . . . . . . . . 9 (𝜑𝐺 = ((Base‘𝑈) × {𝑄}))
31 lclkrlem2f.d . . . . . . . . . 10 𝐷 = (LDual‘𝑈)
32 eqid 2736 . . . . . . . . . 10 (0g𝐷) = (0g𝐷)
3317, 24, 25, 31, 32, 22ldual0v 37468 . . . . . . . . 9 (𝜑 → (0g𝐷) = ((Base‘𝑈) × {𝑄}))
3430, 33eqtr4d 2779 . . . . . . . 8 (𝜑𝐺 = (0g𝐷))
3534oveq2d 7354 . . . . . . 7 (𝜑 → (𝐸 + 𝐺) = (𝐸 + (0g𝐷)))
3631, 22lduallmod 37471 . . . . . . . 8 (𝜑𝐷 ∈ LMod)
37 eqid 2736 . . . . . . . . 9 (Base‘𝐷) = (Base‘𝐷)
38 lclkrlem2f.e . . . . . . . . 9 (𝜑𝐸𝐹)
3926, 31, 37, 22, 38ldualelvbase 37445 . . . . . . . 8 (𝜑𝐸 ∈ (Base‘𝐷))
40 lclkrlem2f.p . . . . . . . . 9 + = (+g𝐷)
4137, 40, 32lmod0vrid 20261 . . . . . . . 8 ((𝐷 ∈ LMod ∧ 𝐸 ∈ (Base‘𝐷)) → (𝐸 + (0g𝐷)) = 𝐸)
4236, 39, 41syl2anc 584 . . . . . . 7 (𝜑 → (𝐸 + (0g𝐷)) = 𝐸)
4335, 42eqtrd 2776 . . . . . 6 (𝜑 → (𝐸 + 𝐺) = 𝐸)
4443fveq2d 6830 . . . . 5 (𝜑 → (𝐿‘(𝐸 + 𝐺)) = (𝐿𝐸))
45 lclkrlem2f.le . . . . 5 (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))
4644, 45eqtr2d 2777 . . . 4 (𝜑 → ( ‘{𝑋}) = (𝐿‘(𝐸 + 𝐺)))
4746fveq2d 6830 . . 3 (𝜑 → ( ‘( ‘{𝑋})) = ( ‘(𝐿‘(𝐸 + 𝐺))))
4847fveq2d 6830 . 2 (𝜑 → ( ‘( ‘( ‘{𝑋}))) = ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))))
4912, 48, 463eqtr3d 2784 1 (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1540  wcel 2105  cdif 3895  wss 3898  {csn 4574   × cxp 5619  ran crn 5622  cfv 6480  (class class class)co 7338  Basecbs 17010  +gcplusg 17060  Scalarcsca 17063  0gc0g 17248  LSSumclsm 19336  LModclmod 20230  LSpanclspn 20340  LSHypclsh 37293  LFnlclfn 37375  LKerclk 37403  LDualcld 37441  HLchlt 37668  LHypclh 38303  DVecHcdvh 39397  DIsoHcdih 39547  ocHcoch 39666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5230  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651  ax-cnex 11029  ax-resscn 11030  ax-1cn 11031  ax-icn 11032  ax-addcl 11033  ax-addrcl 11034  ax-mulcl 11035  ax-mulrcl 11036  ax-mulcom 11037  ax-addass 11038  ax-mulass 11039  ax-distr 11040  ax-i2m1 11041  ax-1ne0 11042  ax-1rid 11043  ax-rnegex 11044  ax-rrecex 11045  ax-cnre 11046  ax-pre-lttri 11047  ax-pre-lttrn 11048  ax-pre-ltadd 11049  ax-pre-mulgt0 11050  ax-riotaBAD 37271
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4854  df-int 4896  df-iun 4944  df-iin 4945  df-br 5094  df-opab 5156  df-mpt 5177  df-tr 5211  df-id 5519  df-eprel 5525  df-po 5533  df-so 5534  df-fr 5576  df-we 5578  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6239  df-ord 6306  df-on 6307  df-lim 6308  df-suc 6309  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-f1 6485  df-fo 6486  df-f1o 6487  df-fv 6488  df-riota 7294  df-ov 7341  df-oprab 7342  df-mpo 7343  df-of 7596  df-om 7782  df-1st 7900  df-2nd 7901  df-tpos 8113  df-undef 8160  df-frecs 8168  df-wrecs 8199  df-recs 8273  df-rdg 8312  df-1o 8368  df-er 8570  df-map 8689  df-en 8806  df-dom 8807  df-sdom 8808  df-fin 8809  df-pnf 11113  df-mnf 11114  df-xr 11115  df-ltxr 11116  df-le 11117  df-sub 11309  df-neg 11310  df-nn 12076  df-2 12138  df-3 12139  df-4 12140  df-5 12141  df-6 12142  df-n0 12336  df-z 12422  df-uz 12685  df-fz 13342  df-struct 16946  df-sets 16963  df-slot 16981  df-ndx 16993  df-base 17011  df-ress 17040  df-plusg 17073  df-mulr 17074  df-sca 17076  df-vsca 17077  df-0g 17250  df-proset 18111  df-poset 18129  df-plt 18146  df-lub 18162  df-glb 18163  df-join 18164  df-meet 18165  df-p0 18241  df-p1 18242  df-lat 18248  df-clat 18315  df-mgm 18424  df-sgrp 18473  df-mnd 18484  df-submnd 18529  df-grp 18677  df-minusg 18678  df-sbg 18679  df-subg 18849  df-cntz 19020  df-lsm 19338  df-cmn 19484  df-abl 19485  df-mgp 19817  df-ur 19834  df-ring 19881  df-oppr 19958  df-dvdsr 19979  df-unit 19980  df-invr 20010  df-dvr 20021  df-drng 20096  df-lmod 20232  df-lss 20301  df-lsp 20341  df-lvec 20472  df-lfl 37376  df-lkr 37404  df-ldual 37442  df-oposet 37494  df-ol 37496  df-oml 37497  df-covers 37584  df-ats 37585  df-atl 37616  df-cvlat 37640  df-hlat 37669  df-llines 37817  df-lplanes 37818  df-lvols 37819  df-lines 37820  df-psubsp 37822  df-pmap 37823  df-padd 38115  df-lhyp 38307  df-laut 38308  df-ldil 38423  df-ltrn 38424  df-trl 38478  df-tendo 39074  df-edring 39076  df-disoa 39348  df-dvech 39398  df-dib 39458  df-dic 39492  df-dih 39548  df-doch 39667
This theorem is referenced by:  lclkrlem2k  39836  lclkrlem2l  39837
  Copyright terms: Public domain W3C validator