HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnconi Structured version   Visualization version   GIF version

Theorem lnfnconi 30090
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfncon.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnconi (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnfnconi
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnfncon.1 . . 3 𝑇 ∈ LinFn
2 nmcfnex 30088 . . 3 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn𝑇) ∈ ℝ)
31, 2mpan 690 . 2 (𝑇 ∈ ContFn → (normfn𝑇) ∈ ℝ)
4 nmcfnlb 30089 . . 3 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
51, 4mp3an1 1450 . 2 ((𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
61lnfnfi 30076 . . 3 𝑇: ℋ⟶ℂ
7 elcnfn 29917 . . 3 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧)))
86, 7mpbiran 709 . 2 (𝑇 ∈ ContFn ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧))
96ffvelrni 6881 . . 3 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℂ)
109abscld 14965 . 2 (𝑦 ∈ ℋ → (abs‘(𝑇𝑦)) ∈ ℝ)
111lnfnsubi 30081 . 2 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
123, 5, 8, 10, 11lnconi 30068 1 (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wcel 2112  wral 3051  wrex 3052   class class class wbr 5039  wf 6354  cfv 6358  (class class class)co 7191  cc 10692  cr 10693   · cmul 10699   < clt 10832  cle 10833  cmin 11027  +crp 12551  abscabs 14762  chba 28954  normcno 28958   cmv 28960  normfncnmf 28986  ContFnccnfn 28988  LinFnclf 28989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-hilex 29034  ax-hfvadd 29035  ax-hv0cl 29038  ax-hvaddid 29039  ax-hfvmul 29040  ax-hvmulid 29041  ax-hvmulass 29042  ax-hvmul0 29045  ax-hfi 29114  ax-his1 29117  ax-his3 29119  ax-his4 29120
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-sup 9036  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-seq 13540  df-exp 13601  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-hnorm 29003  df-hvsub 29006  df-nmfn 29880  df-cnfn 29882  df-lnfn 29883
This theorem is referenced by:  lnfncon  30091
  Copyright terms: Public domain W3C validator