| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > lnfnconi | Structured version Visualization version GIF version | ||
| Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lnfncon.1 | ⊢ 𝑇 ∈ LinFn |
| Ref | Expression |
|---|---|
| lnfnconi | ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfncon.1 | . . 3 ⊢ 𝑇 ∈ LinFn | |
| 2 | nmcfnex 31989 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn‘𝑇) ∈ ℝ) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝑇 ∈ ContFn → (normfn‘𝑇) ∈ ℝ) |
| 4 | nmcfnlb 31990 | . . 3 ⊢ ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) | |
| 5 | 1, 4 | mp3an1 1450 | . 2 ⊢ ((𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇‘𝑦)) ≤ ((normfn‘𝑇) · (normℎ‘𝑦))) |
| 6 | 1 | lnfnfi 31977 | . . 3 ⊢ 𝑇: ℋ⟶ℂ |
| 7 | elcnfn 31818 | . . 3 ⊢ (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑧))) | |
| 8 | 6, 7 | mpbiran 709 | . 2 ⊢ (𝑇 ∈ ContFn ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑤 ∈ ℋ ((normℎ‘(𝑤 −ℎ 𝑥)) < 𝑦 → (abs‘((𝑇‘𝑤) − (𝑇‘𝑥))) < 𝑧)) |
| 9 | 6 | ffvelcdmi 7058 | . . 3 ⊢ (𝑦 ∈ ℋ → (𝑇‘𝑦) ∈ ℂ) |
| 10 | 9 | abscld 15412 | . 2 ⊢ (𝑦 ∈ ℋ → (abs‘(𝑇‘𝑦)) ∈ ℝ) |
| 11 | 1 | lnfnsubi 31982 | . 2 ⊢ ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 −ℎ 𝑥)) = ((𝑇‘𝑤) − (𝑇‘𝑥))) |
| 12 | 3, 5, 8, 10, 11 | lnconi 31969 | 1 ⊢ (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇‘𝑦)) ≤ (𝑥 · (normℎ‘𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 · cmul 11080 < clt 11215 ≤ cle 11216 − cmin 11412 ℝ+crp 12958 abscabs 15207 ℋchba 30855 normℎcno 30859 −ℎ cmv 30861 normfncnmf 30887 ContFnccnfn 30889 LinFnclf 30890 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hilex 30935 ax-hfvadd 30936 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-hnorm 30904 df-hvsub 30907 df-nmfn 31781 df-cnfn 31783 df-lnfn 31784 |
| This theorem is referenced by: lnfncon 31992 |
| Copyright terms: Public domain | W3C validator |