HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnconi Structured version   Visualization version   GIF version

Theorem lnfnconi 30413
Description: A condition equivalent to "𝑇 is continuous" when 𝑇 is linear. Theorem 3.5(iii) of [Beran] p. 99. (Contributed by NM, 14-Feb-2006.) (Proof shortened by Mario Carneiro, 17-Nov-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfncon.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnconi (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem lnfnconi
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lnfncon.1 . . 3 𝑇 ∈ LinFn
2 nmcfnex 30411 . . 3 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn) → (normfn𝑇) ∈ ℝ)
31, 2mpan 687 . 2 (𝑇 ∈ ContFn → (normfn𝑇) ∈ ℝ)
4 nmcfnlb 30412 . . 3 ((𝑇 ∈ LinFn ∧ 𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
51, 4mp3an1 1447 . 2 ((𝑇 ∈ ContFn ∧ 𝑦 ∈ ℋ) → (abs‘(𝑇𝑦)) ≤ ((normfn𝑇) · (norm𝑦)))
61lnfnfi 30399 . . 3 𝑇: ℋ⟶ℂ
7 elcnfn 30240 . . 3 (𝑇 ∈ ContFn ↔ (𝑇: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧)))
86, 7mpbiran 706 . 2 (𝑇 ∈ ContFn ↔ ∀𝑥 ∈ ℋ ∀𝑧 ∈ ℝ+𝑦 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑦 → (abs‘((𝑇𝑤) − (𝑇𝑥))) < 𝑧))
96ffvelrni 6957 . . 3 (𝑦 ∈ ℋ → (𝑇𝑦) ∈ ℂ)
109abscld 15146 . 2 (𝑦 ∈ ℋ → (abs‘(𝑇𝑦)) ∈ ℝ)
111lnfnsubi 30404 . 2 ((𝑤 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘(𝑤 𝑥)) = ((𝑇𝑤) − (𝑇𝑥)))
123, 5, 8, 10, 11lnconi 30391 1 (𝑇 ∈ ContFn ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ℋ (abs‘(𝑇𝑦)) ≤ (𝑥 · (norm𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2110  wral 3066  wrex 3067   class class class wbr 5079  wf 6428  cfv 6432  (class class class)co 7271  cc 10870  cr 10871   · cmul 10877   < clt 11010  cle 11011  cmin 11205  +crp 12729  abscabs 14943  chba 29277  normcno 29281   cmv 29283  normfncnmf 29309  ContFnccnfn 29311  LinFnclf 29312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-hilex 29357  ax-hfvadd 29358  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvmulass 29365  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his3 29442  ax-his4 29443
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-map 8600  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-hnorm 29326  df-hvsub 29329  df-nmfn 30203  df-cnfn 30205  df-lnfn 30206
This theorem is referenced by:  lnfncon  30414
  Copyright terms: Public domain W3C validator