![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > lnfnsubi | Structured version Visualization version GIF version |
Description: Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | β’ π β LinFn |
Ref | Expression |
---|---|
lnfnsubi | β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ ββ π΅)) = ((πβπ΄) β (πβπ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12330 | . . 3 β’ -1 β β | |
2 | lnfnl.1 | . . . 4 β’ π β LinFn | |
3 | 2 | lnfnaddmuli 31553 | . . 3 β’ ((-1 β β β§ π΄ β β β§ π΅ β β) β (πβ(π΄ +β (-1 Β·β π΅))) = ((πβπ΄) + (-1 Β· (πβπ΅)))) |
4 | 1, 3 | mp3an1 1448 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ +β (-1 Β·β π΅))) = ((πβπ΄) + (-1 Β· (πβπ΅)))) |
5 | hvsubval 30524 | . . 3 β’ ((π΄ β β β§ π΅ β β) β (π΄ ββ π΅) = (π΄ +β (-1 Β·β π΅))) | |
6 | 5 | fveq2d 6895 | . 2 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ ββ π΅)) = (πβ(π΄ +β (-1 Β·β π΅)))) |
7 | 2 | lnfnfi 31549 | . . . 4 β’ π: ββΆβ |
8 | 7 | ffvelcdmi 7085 | . . 3 β’ (π΄ β β β (πβπ΄) β β) |
9 | 7 | ffvelcdmi 7085 | . . 3 β’ (π΅ β β β (πβπ΅) β β) |
10 | mulm1 11659 | . . . . . 6 β’ ((πβπ΅) β β β (-1 Β· (πβπ΅)) = -(πβπ΅)) | |
11 | 10 | oveq2d 7427 | . . . . 5 β’ ((πβπ΅) β β β ((πβπ΄) + (-1 Β· (πβπ΅))) = ((πβπ΄) + -(πβπ΅))) |
12 | 11 | adantl 482 | . . . 4 β’ (((πβπ΄) β β β§ (πβπ΅) β β) β ((πβπ΄) + (-1 Β· (πβπ΅))) = ((πβπ΄) + -(πβπ΅))) |
13 | negsub 11512 | . . . 4 β’ (((πβπ΄) β β β§ (πβπ΅) β β) β ((πβπ΄) + -(πβπ΅)) = ((πβπ΄) β (πβπ΅))) | |
14 | 12, 13 | eqtr2d 2773 | . . 3 β’ (((πβπ΄) β β β§ (πβπ΅) β β) β ((πβπ΄) β (πβπ΅)) = ((πβπ΄) + (-1 Β· (πβπ΅)))) |
15 | 8, 9, 14 | syl2an 596 | . 2 β’ ((π΄ β β β§ π΅ β β) β ((πβπ΄) β (πβπ΅)) = ((πβπ΄) + (-1 Β· (πβπ΅)))) |
16 | 4, 6, 15 | 3eqtr4d 2782 | 1 β’ ((π΄ β β β§ π΅ β β) β (πβ(π΄ ββ π΅)) = ((πβπ΄) β (πβπ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 βcc 11110 1c1 11113 + caddc 11115 Β· cmul 11117 β cmin 11448 -cneg 11449 βchba 30427 +β cva 30428 Β·β csm 30429 ββ cmv 30433 LinFnclf 30462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-hilex 30507 ax-hv0cl 30511 ax-hvaddid 30512 ax-hfvmul 30513 ax-hvmulid 30514 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 df-neg 11451 df-hvsub 30479 df-lnfn 31356 |
This theorem is referenced by: lnfnconi 31563 riesz3i 31570 |
Copyright terms: Public domain | W3C validator |