Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > lnfnsubi | Structured version Visualization version GIF version |
Description: Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lnfnl.1 | ⊢ 𝑇 ∈ LinFn |
Ref | Expression |
---|---|
lnfnsubi | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neg1cn 12070 | . . 3 ⊢ -1 ∈ ℂ | |
2 | lnfnl.1 | . . . 4 ⊢ 𝑇 ∈ LinFn | |
3 | 2 | lnfnaddmuli 30386 | . . 3 ⊢ ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵)))) |
4 | 1, 3 | mp3an1 1446 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵))) = ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵)))) |
5 | hvsubval 29357 | . . 3 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 −ℎ 𝐵) = (𝐴 +ℎ (-1 ·ℎ 𝐵))) | |
6 | 5 | fveq2d 6772 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = (𝑇‘(𝐴 +ℎ (-1 ·ℎ 𝐵)))) |
7 | 2 | lnfnfi 30382 | . . . 4 ⊢ 𝑇: ℋ⟶ℂ |
8 | 7 | ffvelrni 6954 | . . 3 ⊢ (𝐴 ∈ ℋ → (𝑇‘𝐴) ∈ ℂ) |
9 | 7 | ffvelrni 6954 | . . 3 ⊢ (𝐵 ∈ ℋ → (𝑇‘𝐵) ∈ ℂ) |
10 | mulm1 11399 | . . . . . 6 ⊢ ((𝑇‘𝐵) ∈ ℂ → (-1 · (𝑇‘𝐵)) = -(𝑇‘𝐵)) | |
11 | 10 | oveq2d 7284 | . . . . 5 ⊢ ((𝑇‘𝐵) ∈ ℂ → ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵))) = ((𝑇‘𝐴) + -(𝑇‘𝐵))) |
12 | 11 | adantl 481 | . . . 4 ⊢ (((𝑇‘𝐴) ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵))) = ((𝑇‘𝐴) + -(𝑇‘𝐵))) |
13 | negsub 11252 | . . . 4 ⊢ (((𝑇‘𝐴) ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → ((𝑇‘𝐴) + -(𝑇‘𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) | |
14 | 12, 13 | eqtr2d 2780 | . . 3 ⊢ (((𝑇‘𝐴) ∈ ℂ ∧ (𝑇‘𝐵) ∈ ℂ) → ((𝑇‘𝐴) − (𝑇‘𝐵)) = ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵)))) |
15 | 8, 9, 14 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇‘𝐴) − (𝑇‘𝐵)) = ((𝑇‘𝐴) + (-1 · (𝑇‘𝐵)))) |
16 | 4, 6, 15 | 3eqtr4d 2789 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 −ℎ 𝐵)) = ((𝑇‘𝐴) − (𝑇‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ‘cfv 6430 (class class class)co 7268 ℂcc 10853 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 -cneg 11189 ℋchba 29260 +ℎ cva 29261 ·ℎ csm 29262 −ℎ cmv 29266 LinFnclf 29295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-hilex 29340 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-neg 11191 df-hvsub 29312 df-lnfn 30189 |
This theorem is referenced by: lnfnconi 30396 riesz3i 30403 |
Copyright terms: Public domain | W3C validator |