HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  lnfnsubi Structured version   Visualization version   GIF version

Theorem lnfnsubi 30387
Description: Subtraction property for a linear Hilbert space functional. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
lnfnl.1 𝑇 ∈ LinFn
Assertion
Ref Expression
lnfnsubi ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))

Proof of Theorem lnfnsubi
StepHypRef Expression
1 neg1cn 12070 . . 3 -1 ∈ ℂ
2 lnfnl.1 . . . 4 𝑇 ∈ LinFn
32lnfnaddmuli 30386 . . 3 ((-1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (-1 · 𝐵))) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
41, 3mp3an1 1446 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 + (-1 · 𝐵))) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
5 hvsubval 29357 . . 3 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 𝐵) = (𝐴 + (-1 · 𝐵)))
65fveq2d 6772 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = (𝑇‘(𝐴 + (-1 · 𝐵))))
72lnfnfi 30382 . . . 4 𝑇: ℋ⟶ℂ
87ffvelrni 6954 . . 3 (𝐴 ∈ ℋ → (𝑇𝐴) ∈ ℂ)
97ffvelrni 6954 . . 3 (𝐵 ∈ ℋ → (𝑇𝐵) ∈ ℂ)
10 mulm1 11399 . . . . . 6 ((𝑇𝐵) ∈ ℂ → (-1 · (𝑇𝐵)) = -(𝑇𝐵))
1110oveq2d 7284 . . . . 5 ((𝑇𝐵) ∈ ℂ → ((𝑇𝐴) + (-1 · (𝑇𝐵))) = ((𝑇𝐴) + -(𝑇𝐵)))
1211adantl 481 . . . 4 (((𝑇𝐴) ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → ((𝑇𝐴) + (-1 · (𝑇𝐵))) = ((𝑇𝐴) + -(𝑇𝐵)))
13 negsub 11252 . . . 4 (((𝑇𝐴) ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → ((𝑇𝐴) + -(𝑇𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
1412, 13eqtr2d 2780 . . 3 (((𝑇𝐴) ∈ ℂ ∧ (𝑇𝐵) ∈ ℂ) → ((𝑇𝐴) − (𝑇𝐵)) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
158, 9, 14syl2an 595 . 2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝑇𝐴) − (𝑇𝐵)) = ((𝑇𝐴) + (-1 · (𝑇𝐵))))
164, 6, 153eqtr4d 2789 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑇‘(𝐴 𝐵)) = ((𝑇𝐴) − (𝑇𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  cfv 6430  (class class class)co 7268  cc 10853  1c1 10856   + caddc 10858   · cmul 10860  cmin 11188  -cneg 11189  chba 29260   + cva 29261   · csm 29262   cmv 29266  LinFnclf 29295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-hilex 29340  ax-hv0cl 29344  ax-hvaddid 29345  ax-hfvmul 29346  ax-hvmulid 29347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-ltxr 10998  df-sub 11190  df-neg 11191  df-hvsub 29312  df-lnfn 30189
This theorem is referenced by:  lnfnconi  30396  riesz3i  30403
  Copyright terms: Public domain W3C validator