Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubsscl Structured version   Visualization version   GIF version

Theorem lubsscl 48948
Description: If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubsscl.k (𝜑𝐾 ∈ Poset)
lubsscl.t (𝜑𝑇𝑆)
lubsscl.u 𝑈 = (lub‘𝐾)
lubsscl.s (𝜑𝑆 ∈ dom 𝑈)
lubsscl.x (𝜑 → (𝑈𝑆) ∈ 𝑇)
Assertion
Ref Expression
lubsscl (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))

Proof of Theorem lubsscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubsscl.t . . . 4 (𝜑𝑇𝑆)
2 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2729 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 lubsscl.u . . . . 5 𝑈 = (lub‘𝐾)
5 lubsscl.k . . . . 5 (𝜑𝐾 ∈ Poset)
6 lubsscl.s . . . . 5 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubelss 18313 . . . 4 (𝜑𝑆 ⊆ (Base‘𝐾))
81, 7sstrd 3957 . . 3 (𝜑𝑇 ⊆ (Base‘𝐾))
9 lubsscl.x . . . . 5 (𝜑 → (𝑈𝑆) ∈ 𝑇)
108, 9sseldd 3947 . . . 4 (𝜑 → (𝑈𝑆) ∈ (Base‘𝐾))
115adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝐾 ∈ Poset)
126adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝑆 ∈ dom 𝑈)
131sselda 3946 . . . . . 6 ((𝜑𝑦𝑇) → 𝑦𝑆)
142, 3, 4, 11, 12, 13luble 18318 . . . . 5 ((𝜑𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑆))
1514ralrimiva 3125 . . . 4 (𝜑 → ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆))
16 breq1 5110 . . . . . . 7 (𝑦 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
17 simp3 1138 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ∀𝑦𝑇 𝑦(le‘𝐾)𝑧)
1893ad2ant1 1133 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆) ∈ 𝑇)
1916, 17, 18rspcdva 3589 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆)(le‘𝐾)𝑧)
20193expia 1121 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐾)) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
2120ralrimiva 3125 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
22 breq2 5111 . . . . . . 7 (𝑥 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)(𝑈𝑆)))
2322ralbidv 3156 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ↔ ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆)))
24 breq1 5110 . . . . . . . 8 (𝑥 = (𝑈𝑆) → (𝑥(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
2524imbi2d 340 . . . . . . 7 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2625ralbidv 3156 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2723, 26anbi12d 632 . . . . 5 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))))
2827rspcev 3588 . . . 4 (((𝑈𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2910, 15, 21, 28syl12anc 836 . . 3 (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
30 biid 261 . . . 4 ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
312, 3, 4, 30, 5lubeldm2 48944 . . 3 (𝜑 → (𝑇 ∈ dom 𝑈 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
328, 29, 31mpbir2and 713 . 2 (𝜑𝑇 ∈ dom 𝑈)
333, 2, 4, 5, 8, 10, 14, 19poslubd 18372 . 2 (𝜑 → (𝑈𝑇) = (𝑈𝑆))
3432, 33jca 511 1 (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  dom cdm 5638  cfv 6511  Basecbs 17179  lecple 17227  Posetcpo 18268  lubclub 18270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-proset 18255  df-poset 18274  df-lub 18305
This theorem is referenced by:  lubprlem  48950
  Copyright terms: Public domain W3C validator