Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubsscl Structured version   Visualization version   GIF version

Theorem lubsscl 48640
Description: If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubsscl.k (𝜑𝐾 ∈ Poset)
lubsscl.t (𝜑𝑇𝑆)
lubsscl.u 𝑈 = (lub‘𝐾)
lubsscl.s (𝜑𝑆 ∈ dom 𝑈)
lubsscl.x (𝜑 → (𝑈𝑆) ∈ 𝑇)
Assertion
Ref Expression
lubsscl (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))

Proof of Theorem lubsscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubsscl.t . . . 4 (𝜑𝑇𝑆)
2 eqid 2740 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2740 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 lubsscl.u . . . . 5 𝑈 = (lub‘𝐾)
5 lubsscl.k . . . . 5 (𝜑𝐾 ∈ Poset)
6 lubsscl.s . . . . 5 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubelss 18424 . . . 4 (𝜑𝑆 ⊆ (Base‘𝐾))
81, 7sstrd 4019 . . 3 (𝜑𝑇 ⊆ (Base‘𝐾))
9 lubsscl.x . . . . 5 (𝜑 → (𝑈𝑆) ∈ 𝑇)
108, 9sseldd 4009 . . . 4 (𝜑 → (𝑈𝑆) ∈ (Base‘𝐾))
115adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝐾 ∈ Poset)
126adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝑆 ∈ dom 𝑈)
131sselda 4008 . . . . . 6 ((𝜑𝑦𝑇) → 𝑦𝑆)
142, 3, 4, 11, 12, 13luble 18429 . . . . 5 ((𝜑𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑆))
1514ralrimiva 3152 . . . 4 (𝜑 → ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆))
16 breq1 5169 . . . . . . 7 (𝑦 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
17 simp3 1138 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ∀𝑦𝑇 𝑦(le‘𝐾)𝑧)
1893ad2ant1 1133 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆) ∈ 𝑇)
1916, 17, 18rspcdva 3636 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆)(le‘𝐾)𝑧)
20193expia 1121 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐾)) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
2120ralrimiva 3152 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
22 breq2 5170 . . . . . . 7 (𝑥 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)(𝑈𝑆)))
2322ralbidv 3184 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ↔ ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆)))
24 breq1 5169 . . . . . . . 8 (𝑥 = (𝑈𝑆) → (𝑥(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
2524imbi2d 340 . . . . . . 7 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2625ralbidv 3184 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2723, 26anbi12d 631 . . . . 5 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))))
2827rspcev 3635 . . . 4 (((𝑈𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2910, 15, 21, 28syl12anc 836 . . 3 (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
30 biid 261 . . . 4 ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
312, 3, 4, 30, 5lubeldm2 48636 . . 3 (𝜑 → (𝑇 ∈ dom 𝑈 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
328, 29, 31mpbir2and 712 . 2 (𝜑𝑇 ∈ dom 𝑈)
333, 2, 4, 5, 8, 10, 14, 19poslubd 18483 . 2 (𝜑 → (𝑈𝑇) = (𝑈𝑆))
3432, 33jca 511 1 (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976   class class class wbr 5166  dom cdm 5700  cfv 6573  Basecbs 17258  lecple 17318  Posetcpo 18377  lubclub 18379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-proset 18365  df-poset 18383  df-lub 18416
This theorem is referenced by:  lubprlem  48642
  Copyright terms: Public domain W3C validator