Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubsscl Structured version   Visualization version   GIF version

Theorem lubsscl 47681
Description: If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubsscl.k (πœ‘ β†’ 𝐾 ∈ Poset)
lubsscl.t (πœ‘ β†’ 𝑇 βŠ† 𝑆)
lubsscl.u π‘ˆ = (lubβ€˜πΎ)
lubsscl.s (πœ‘ β†’ 𝑆 ∈ dom π‘ˆ)
lubsscl.x (πœ‘ β†’ (π‘ˆβ€˜π‘†) ∈ 𝑇)
Assertion
Ref Expression
lubsscl (πœ‘ β†’ (𝑇 ∈ dom π‘ˆ ∧ (π‘ˆβ€˜π‘‡) = (π‘ˆβ€˜π‘†)))

Proof of Theorem lubsscl
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubsscl.t . . . 4 (πœ‘ β†’ 𝑇 βŠ† 𝑆)
2 eqid 2732 . . . . 5 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
3 eqid 2732 . . . . 5 (leβ€˜πΎ) = (leβ€˜πΎ)
4 lubsscl.u . . . . 5 π‘ˆ = (lubβ€˜πΎ)
5 lubsscl.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ Poset)
6 lubsscl.s . . . . 5 (πœ‘ β†’ 𝑆 ∈ dom π‘ˆ)
72, 3, 4, 5, 6lubelss 18311 . . . 4 (πœ‘ β†’ 𝑆 βŠ† (Baseβ€˜πΎ))
81, 7sstrd 3992 . . 3 (πœ‘ β†’ 𝑇 βŠ† (Baseβ€˜πΎ))
9 lubsscl.x . . . . 5 (πœ‘ β†’ (π‘ˆβ€˜π‘†) ∈ 𝑇)
108, 9sseldd 3983 . . . 4 (πœ‘ β†’ (π‘ˆβ€˜π‘†) ∈ (Baseβ€˜πΎ))
115adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝑇) β†’ 𝐾 ∈ Poset)
126adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝑇) β†’ 𝑆 ∈ dom π‘ˆ)
131sselda 3982 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ 𝑇) β†’ 𝑦 ∈ 𝑆)
142, 3, 4, 11, 12, 13luble 18316 . . . . 5 ((πœ‘ ∧ 𝑦 ∈ 𝑇) β†’ 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†))
1514ralrimiva 3146 . . . 4 (πœ‘ β†’ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†))
16 breq1 5151 . . . . . . 7 (𝑦 = (π‘ˆβ€˜π‘†) β†’ (𝑦(leβ€˜πΎ)𝑧 ↔ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))
17 simp3 1138 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧) β†’ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧)
1893ad2ant1 1133 . . . . . . 7 ((πœ‘ ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧) β†’ (π‘ˆβ€˜π‘†) ∈ 𝑇)
1916, 17, 18rspcdva 3613 . . . . . 6 ((πœ‘ ∧ 𝑧 ∈ (Baseβ€˜πΎ) ∧ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧) β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧)
20193expia 1121 . . . . 5 ((πœ‘ ∧ 𝑧 ∈ (Baseβ€˜πΎ)) β†’ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))
2120ralrimiva 3146 . . . 4 (πœ‘ β†’ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))
22 breq2 5152 . . . . . . 7 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ (𝑦(leβ€˜πΎ)π‘₯ ↔ 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†)))
2322ralbidv 3177 . . . . . 6 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ↔ βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†)))
24 breq1 5151 . . . . . . . 8 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ (π‘₯(leβ€˜πΎ)𝑧 ↔ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))
2524imbi2d 340 . . . . . . 7 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ ((βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧) ↔ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧)))
2625ralbidv 3177 . . . . . 6 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ (βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧) ↔ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧)))
2723, 26anbi12d 631 . . . . 5 (π‘₯ = (π‘ˆβ€˜π‘†) β†’ ((βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†) ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))))
2827rspcev 3612 . . . 4 (((π‘ˆβ€˜π‘†) ∈ (Baseβ€˜πΎ) ∧ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)(π‘ˆβ€˜π‘†) ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ (π‘ˆβ€˜π‘†)(leβ€˜πΎ)𝑧))) β†’ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
2910, 15, 21, 28syl12anc 835 . . 3 (πœ‘ β†’ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
30 biid 260 . . . 4 ((βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)) ↔ (βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))
312, 3, 4, 30, 5lubeldm2 47677 . . 3 (πœ‘ β†’ (𝑇 ∈ dom π‘ˆ ↔ (𝑇 βŠ† (Baseβ€˜πΎ) ∧ βˆƒπ‘₯ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)π‘₯ ∧ βˆ€π‘§ ∈ (Baseβ€˜πΎ)(βˆ€π‘¦ ∈ 𝑇 𝑦(leβ€˜πΎ)𝑧 β†’ π‘₯(leβ€˜πΎ)𝑧)))))
328, 29, 31mpbir2and 711 . 2 (πœ‘ β†’ 𝑇 ∈ dom π‘ˆ)
333, 2, 4, 5, 8, 10, 14, 19poslubd 18370 . 2 (πœ‘ β†’ (π‘ˆβ€˜π‘‡) = (π‘ˆβ€˜π‘†))
3432, 33jca 512 1 (πœ‘ β†’ (𝑇 ∈ dom π‘ˆ ∧ (π‘ˆβ€˜π‘‡) = (π‘ˆβ€˜π‘†)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βŠ† wss 3948   class class class wbr 5148  dom cdm 5676  β€˜cfv 6543  Basecbs 17148  lecple 17208  Posetcpo 18264  lubclub 18266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-proset 18252  df-poset 18270  df-lub 18303
This theorem is referenced by:  lubprlem  47683
  Copyright terms: Public domain W3C validator