Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubsscl Structured version   Visualization version   GIF version

Theorem lubsscl 48294
Description: If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubsscl.k (𝜑𝐾 ∈ Poset)
lubsscl.t (𝜑𝑇𝑆)
lubsscl.u 𝑈 = (lub‘𝐾)
lubsscl.s (𝜑𝑆 ∈ dom 𝑈)
lubsscl.x (𝜑 → (𝑈𝑆) ∈ 𝑇)
Assertion
Ref Expression
lubsscl (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))

Proof of Theorem lubsscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubsscl.t . . . 4 (𝜑𝑇𝑆)
2 eqid 2726 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2726 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 lubsscl.u . . . . 5 𝑈 = (lub‘𝐾)
5 lubsscl.k . . . . 5 (𝜑𝐾 ∈ Poset)
6 lubsscl.s . . . . 5 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubelss 18379 . . . 4 (𝜑𝑆 ⊆ (Base‘𝐾))
81, 7sstrd 3990 . . 3 (𝜑𝑇 ⊆ (Base‘𝐾))
9 lubsscl.x . . . . 5 (𝜑 → (𝑈𝑆) ∈ 𝑇)
108, 9sseldd 3980 . . . 4 (𝜑 → (𝑈𝑆) ∈ (Base‘𝐾))
115adantr 479 . . . . . 6 ((𝜑𝑦𝑇) → 𝐾 ∈ Poset)
126adantr 479 . . . . . 6 ((𝜑𝑦𝑇) → 𝑆 ∈ dom 𝑈)
131sselda 3979 . . . . . 6 ((𝜑𝑦𝑇) → 𝑦𝑆)
142, 3, 4, 11, 12, 13luble 18384 . . . . 5 ((𝜑𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑆))
1514ralrimiva 3136 . . . 4 (𝜑 → ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆))
16 breq1 5156 . . . . . . 7 (𝑦 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
17 simp3 1135 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ∀𝑦𝑇 𝑦(le‘𝐾)𝑧)
1893ad2ant1 1130 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆) ∈ 𝑇)
1916, 17, 18rspcdva 3609 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆)(le‘𝐾)𝑧)
20193expia 1118 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐾)) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
2120ralrimiva 3136 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
22 breq2 5157 . . . . . . 7 (𝑥 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)(𝑈𝑆)))
2322ralbidv 3168 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ↔ ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆)))
24 breq1 5156 . . . . . . . 8 (𝑥 = (𝑈𝑆) → (𝑥(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
2524imbi2d 339 . . . . . . 7 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2625ralbidv 3168 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2723, 26anbi12d 630 . . . . 5 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))))
2827rspcev 3608 . . . 4 (((𝑈𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2910, 15, 21, 28syl12anc 835 . . 3 (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
30 biid 260 . . . 4 ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
312, 3, 4, 30, 5lubeldm2 48290 . . 3 (𝜑 → (𝑇 ∈ dom 𝑈 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
328, 29, 31mpbir2and 711 . 2 (𝜑𝑇 ∈ dom 𝑈)
333, 2, 4, 5, 8, 10, 14, 19poslubd 18438 . 2 (𝜑 → (𝑈𝑇) = (𝑈𝑆))
3432, 33jca 510 1 (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wrex 3060  wss 3947   class class class wbr 5153  dom cdm 5682  cfv 6554  Basecbs 17213  lecple 17273  Posetcpo 18332  lubclub 18334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-proset 18320  df-poset 18338  df-lub 18371
This theorem is referenced by:  lubprlem  48296
  Copyright terms: Public domain W3C validator