Step | Hyp | Ref
| Expression |
1 | | lubsscl.t |
. . . 4
β’ (π β π β π) |
2 | | eqid 2732 |
. . . . 5
β’
(BaseβπΎ) =
(BaseβπΎ) |
3 | | eqid 2732 |
. . . . 5
β’
(leβπΎ) =
(leβπΎ) |
4 | | lubsscl.u |
. . . . 5
β’ π = (lubβπΎ) |
5 | | lubsscl.k |
. . . . 5
β’ (π β πΎ β Poset) |
6 | | lubsscl.s |
. . . . 5
β’ (π β π β dom π) |
7 | 2, 3, 4, 5, 6 | lubelss 18311 |
. . . 4
β’ (π β π β (BaseβπΎ)) |
8 | 1, 7 | sstrd 3992 |
. . 3
β’ (π β π β (BaseβπΎ)) |
9 | | lubsscl.x |
. . . . 5
β’ (π β (πβπ) β π) |
10 | 8, 9 | sseldd 3983 |
. . . 4
β’ (π β (πβπ) β (BaseβπΎ)) |
11 | 5 | adantr 481 |
. . . . . 6
β’ ((π β§ π¦ β π) β πΎ β Poset) |
12 | 6 | adantr 481 |
. . . . . 6
β’ ((π β§ π¦ β π) β π β dom π) |
13 | 1 | sselda 3982 |
. . . . . 6
β’ ((π β§ π¦ β π) β π¦ β π) |
14 | 2, 3, 4, 11, 12, 13 | luble 18316 |
. . . . 5
β’ ((π β§ π¦ β π) β π¦(leβπΎ)(πβπ)) |
15 | 14 | ralrimiva 3146 |
. . . 4
β’ (π β βπ¦ β π π¦(leβπΎ)(πβπ)) |
16 | | breq1 5151 |
. . . . . . 7
β’ (π¦ = (πβπ) β (π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§)) |
17 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π¦(leβπΎ)π§) β βπ¦ β π π¦(leβπΎ)π§) |
18 | 9 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π¦(leβπΎ)π§) β (πβπ) β π) |
19 | 16, 17, 18 | rspcdva 3613 |
. . . . . 6
β’ ((π β§ π§ β (BaseβπΎ) β§ βπ¦ β π π¦(leβπΎ)π§) β (πβπ)(leβπΎ)π§) |
20 | 19 | 3expia 1121 |
. . . . 5
β’ ((π β§ π§ β (BaseβπΎ)) β (βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§)) |
21 | 20 | ralrimiva 3146 |
. . . 4
β’ (π β βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§)) |
22 | | breq2 5152 |
. . . . . . 7
β’ (π₯ = (πβπ) β (π¦(leβπΎ)π₯ β π¦(leβπΎ)(πβπ))) |
23 | 22 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = (πβπ) β (βπ¦ β π π¦(leβπΎ)π₯ β βπ¦ β π π¦(leβπΎ)(πβπ))) |
24 | | breq1 5151 |
. . . . . . . 8
β’ (π₯ = (πβπ) β (π₯(leβπΎ)π§ β (πβπ)(leβπΎ)π§)) |
25 | 24 | imbi2d 340 |
. . . . . . 7
β’ (π₯ = (πβπ) β ((βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§) β (βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§))) |
26 | 25 | ralbidv 3177 |
. . . . . 6
β’ (π₯ = (πβπ) β (βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§) β βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§))) |
27 | 23, 26 | anbi12d 631 |
. . . . 5
β’ (π₯ = (πβπ) β ((βπ¦ β π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) β (βπ¦ β π π¦(leβπΎ)(πβπ) β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§)))) |
28 | 27 | rspcev 3612 |
. . . 4
β’ (((πβπ) β (BaseβπΎ) β§ (βπ¦ β π π¦(leβπΎ)(πβπ) β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β (πβπ)(leβπΎ)π§))) β βπ₯ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
29 | 10, 15, 21, 28 | syl12anc 835 |
. . 3
β’ (π β βπ₯ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
30 | | biid 260 |
. . . 4
β’
((βπ¦ β
π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§)) β (βπ¦ β π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§))) |
31 | 2, 3, 4, 30, 5 | lubeldm2 47677 |
. . 3
β’ (π β (π β dom π β (π β (BaseβπΎ) β§ βπ₯ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π₯ β§ βπ§ β (BaseβπΎ)(βπ¦ β π π¦(leβπΎ)π§ β π₯(leβπΎ)π§))))) |
32 | 8, 29, 31 | mpbir2and 711 |
. 2
β’ (π β π β dom π) |
33 | 3, 2, 4, 5, 8, 10,
14, 19 | poslubd 18370 |
. 2
β’ (π β (πβπ) = (πβπ)) |
34 | 32, 33 | jca 512 |
1
β’ (π β (π β dom π β§ (πβπ) = (πβπ))) |