Step | Hyp | Ref
| Expression |
1 | | lubsscl.t |
. . . 4
⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
2 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝐾) =
(Base‘𝐾) |
3 | | eqid 2738 |
. . . . 5
⊢
(le‘𝐾) =
(le‘𝐾) |
4 | | lubsscl.u |
. . . . 5
⊢ 𝑈 = (lub‘𝐾) |
5 | | lubsscl.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ Poset) |
6 | | lubsscl.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ dom 𝑈) |
7 | 2, 3, 4, 5, 6 | lubelss 17987 |
. . . 4
⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐾)) |
8 | 1, 7 | sstrd 3927 |
. . 3
⊢ (𝜑 → 𝑇 ⊆ (Base‘𝐾)) |
9 | | lubsscl.x |
. . . . 5
⊢ (𝜑 → (𝑈‘𝑆) ∈ 𝑇) |
10 | 8, 9 | sseldd 3918 |
. . . 4
⊢ (𝜑 → (𝑈‘𝑆) ∈ (Base‘𝐾)) |
11 | 5 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝐾 ∈ Poset) |
12 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑆 ∈ dom 𝑈) |
13 | 1 | sselda 3917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦 ∈ 𝑆) |
14 | 2, 3, 4, 11, 12, 13 | luble 17992 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ 𝑇) → 𝑦(le‘𝐾)(𝑈‘𝑆)) |
15 | 14 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)(𝑈‘𝑆)) |
16 | | breq1 5073 |
. . . . . . 7
⊢ (𝑦 = (𝑈‘𝑆) → (𝑦(le‘𝐾)𝑧 ↔ (𝑈‘𝑆)(le‘𝐾)𝑧)) |
17 | | simp3 1136 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧) → ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧) |
18 | 9 | 3ad2ant1 1131 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧) → (𝑈‘𝑆) ∈ 𝑇) |
19 | 16, 17, 18 | rspcdva 3554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧) → (𝑈‘𝑆)(le‘𝐾)𝑧) |
20 | 19 | 3expia 1119 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ (Base‘𝐾)) → (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧)) |
21 | 20 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧)) |
22 | | breq2 5074 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝑆) → (𝑦(le‘𝐾)𝑥 ↔ 𝑦(le‘𝐾)(𝑈‘𝑆))) |
23 | 22 | ralbidv 3120 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ↔ ∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)(𝑈‘𝑆))) |
24 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑈‘𝑆) → (𝑥(le‘𝐾)𝑧 ↔ (𝑈‘𝑆)(le‘𝐾)𝑧)) |
25 | 24 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧) ↔ (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧))) |
26 | 25 | ralbidv 3120 |
. . . . . 6
⊢ (𝑥 = (𝑈‘𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧))) |
27 | 23, 26 | anbi12d 630 |
. . . . 5
⊢ (𝑥 = (𝑈‘𝑆) → ((∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)(𝑈‘𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧)))) |
28 | 27 | rspcev 3552 |
. . . 4
⊢ (((𝑈‘𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)(𝑈‘𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → (𝑈‘𝑆)(le‘𝐾)𝑧))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) |
29 | 10, 15, 21, 28 | syl12anc 833 |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) |
30 | | biid 260 |
. . . 4
⊢
((∀𝑦 ∈
𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))) |
31 | 2, 3, 4, 30, 5 | lubeldm2 46138 |
. . 3
⊢ (𝜑 → (𝑇 ∈ dom 𝑈 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦 ∈ 𝑇 𝑦(le‘𝐾)𝑧 → 𝑥(le‘𝐾)𝑧))))) |
32 | 8, 29, 31 | mpbir2and 709 |
. 2
⊢ (𝜑 → 𝑇 ∈ dom 𝑈) |
33 | 3, 2, 4, 5, 8, 10,
14, 19 | poslubd 18046 |
. 2
⊢ (𝜑 → (𝑈‘𝑇) = (𝑈‘𝑆)) |
34 | 32, 33 | jca 511 |
1
⊢ (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈‘𝑇) = (𝑈‘𝑆))) |