Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lubsscl Structured version   Visualization version   GIF version

Theorem lubsscl 48901
Description: If a subset of 𝑆 contains the LUB of 𝑆, then the two sets have the same LUB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubsscl.k (𝜑𝐾 ∈ Poset)
lubsscl.t (𝜑𝑇𝑆)
lubsscl.u 𝑈 = (lub‘𝐾)
lubsscl.s (𝜑𝑆 ∈ dom 𝑈)
lubsscl.x (𝜑 → (𝑈𝑆) ∈ 𝑇)
Assertion
Ref Expression
lubsscl (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))

Proof of Theorem lubsscl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lubsscl.t . . . 4 (𝜑𝑇𝑆)
2 eqid 2736 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2736 . . . . 5 (le‘𝐾) = (le‘𝐾)
4 lubsscl.u . . . . 5 𝑈 = (lub‘𝐾)
5 lubsscl.k . . . . 5 (𝜑𝐾 ∈ Poset)
6 lubsscl.s . . . . 5 (𝜑𝑆 ∈ dom 𝑈)
72, 3, 4, 5, 6lubelss 18369 . . . 4 (𝜑𝑆 ⊆ (Base‘𝐾))
81, 7sstrd 3974 . . 3 (𝜑𝑇 ⊆ (Base‘𝐾))
9 lubsscl.x . . . . 5 (𝜑 → (𝑈𝑆) ∈ 𝑇)
108, 9sseldd 3964 . . . 4 (𝜑 → (𝑈𝑆) ∈ (Base‘𝐾))
115adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝐾 ∈ Poset)
126adantr 480 . . . . . 6 ((𝜑𝑦𝑇) → 𝑆 ∈ dom 𝑈)
131sselda 3963 . . . . . 6 ((𝜑𝑦𝑇) → 𝑦𝑆)
142, 3, 4, 11, 12, 13luble 18374 . . . . 5 ((𝜑𝑦𝑇) → 𝑦(le‘𝐾)(𝑈𝑆))
1514ralrimiva 3133 . . . 4 (𝜑 → ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆))
16 breq1 5127 . . . . . . 7 (𝑦 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
17 simp3 1138 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → ∀𝑦𝑇 𝑦(le‘𝐾)𝑧)
1893ad2ant1 1133 . . . . . . 7 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆) ∈ 𝑇)
1916, 17, 18rspcdva 3607 . . . . . 6 ((𝜑𝑧 ∈ (Base‘𝐾) ∧ ∀𝑦𝑇 𝑦(le‘𝐾)𝑧) → (𝑈𝑆)(le‘𝐾)𝑧)
20193expia 1121 . . . . 5 ((𝜑𝑧 ∈ (Base‘𝐾)) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
2120ralrimiva 3133 . . . 4 (𝜑 → ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))
22 breq2 5128 . . . . . . 7 (𝑥 = (𝑈𝑆) → (𝑦(le‘𝐾)𝑥𝑦(le‘𝐾)(𝑈𝑆)))
2322ralbidv 3164 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ↔ ∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆)))
24 breq1 5127 . . . . . . . 8 (𝑥 = (𝑈𝑆) → (𝑥(le‘𝐾)𝑧 ↔ (𝑈𝑆)(le‘𝐾)𝑧))
2524imbi2d 340 . . . . . . 7 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2625ralbidv 3164 . . . . . 6 (𝑥 = (𝑈𝑆) → (∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧)))
2723, 26anbi12d 632 . . . . 5 (𝑥 = (𝑈𝑆) → ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))))
2827rspcev 3606 . . . 4 (((𝑈𝑆) ∈ (Base‘𝐾) ∧ (∀𝑦𝑇 𝑦(le‘𝐾)(𝑈𝑆) ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧 → (𝑈𝑆)(le‘𝐾)𝑧))) → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
2910, 15, 21, 28syl12anc 836 . . 3 (𝜑 → ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
30 biid 261 . . . 4 ((∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)) ↔ (∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))
312, 3, 4, 30, 5lubeldm2 48897 . . 3 (𝜑 → (𝑇 ∈ dom 𝑈 ↔ (𝑇 ⊆ (Base‘𝐾) ∧ ∃𝑥 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑥 ∧ ∀𝑧 ∈ (Base‘𝐾)(∀𝑦𝑇 𝑦(le‘𝐾)𝑧𝑥(le‘𝐾)𝑧)))))
328, 29, 31mpbir2and 713 . 2 (𝜑𝑇 ∈ dom 𝑈)
333, 2, 4, 5, 8, 10, 14, 19poslubd 18428 . 2 (𝜑 → (𝑈𝑇) = (𝑈𝑆))
3432, 33jca 511 1 (𝜑 → (𝑇 ∈ dom 𝑈 ∧ (𝑈𝑇) = (𝑈𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061  wss 3931   class class class wbr 5124  dom cdm 5659  cfv 6536  Basecbs 17233  lecple 17283  Posetcpo 18324  lubclub 18326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-proset 18311  df-poset 18330  df-lub 18361
This theorem is referenced by:  lubprlem  48903
  Copyright terms: Public domain W3C validator