Step | Hyp | Ref
| Expression |
1 | | birthday.t |
. . . . . . 7
⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} |
2 | 1 | fveq2i 6720 |
. . . . . 6
⊢
(♯‘𝑇) =
(♯‘{𝑓 ∣
𝑓:(1...𝐾)–1-1→(1...𝑁)}) |
3 | | fzfi 13545 |
. . . . . . 7
⊢
(1...𝐾) ∈
Fin |
4 | | fzfi 13545 |
. . . . . . 7
⊢
(1...𝑁) ∈
Fin |
5 | | hashf1 14023 |
. . . . . . 7
⊢
(((1...𝐾) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ (♯‘{𝑓
∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) ·
((♯‘(1...𝑁))C(♯‘(1...𝐾))))) |
6 | 3, 4, 5 | mp2an 692 |
. . . . . 6
⊢
(♯‘{𝑓
∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) ·
((♯‘(1...𝑁))C(♯‘(1...𝐾)))) |
7 | 2, 6 | eqtri 2765 |
. . . . 5
⊢
(♯‘𝑇) =
((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) |
8 | | elfznn0 13205 |
. . . . . . . . 9
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈
ℕ0) |
9 | 8 | adantl 485 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈
ℕ0) |
10 | | hashfz1 13912 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ (♯‘(1...𝐾)) = 𝐾) |
11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = 𝐾) |
12 | 11 | fveq2d 6721 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(♯‘(1...𝐾))) = (!‘𝐾)) |
13 | | nnnn0 12097 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
14 | | hashfz1 13912 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(♯‘(1...𝑁)) =
𝑁) |
16 | 15 | adantr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝑁)) = 𝑁) |
17 | 16, 11 | oveq12d 7231 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))C(♯‘(1...𝐾))) = (𝑁C𝐾)) |
18 | 12, 17 | oveq12d 7231 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) = ((!‘𝐾) · (𝑁C𝐾))) |
19 | 7, 18 | syl5eq 2790 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = ((!‘𝐾) · (𝑁C𝐾))) |
20 | 13 | adantr 484 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
21 | 20 | faccld 13850 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ) |
22 | 21 | nncnd 11846 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ) |
23 | | fznn0sub 13144 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
24 | 23 | adantl 485 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈
ℕ0) |
25 | 24 | faccld 13850 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ∈ ℕ) |
26 | 25 | nncnd 11846 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ∈ ℂ) |
27 | 25 | nnne0d 11880 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ≠ 0) |
28 | 22, 26, 27 | divcld 11608 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁 − 𝐾))) ∈ ℂ) |
29 | 9 | faccld 13850 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ) |
30 | 29 | nncnd 11846 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ) |
31 | 29 | nnne0d 11880 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0) |
32 | 28, 30, 31 | divcan2d 11610 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾))) = ((!‘𝑁) / (!‘(𝑁 − 𝐾)))) |
33 | | bcval2 13871 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
34 | 33 | adantl 485 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
35 | 22, 26, 30, 27, 31 | divdiv1d 11639 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
36 | 34, 35 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾))) |
37 | 36 | oveq2d 7229 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾)))) |
38 | | fzfid 13546 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin) |
39 | | elfznn 13141 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
40 | 39 | adantl 485 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ) |
41 | | nnrp 12597 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
42 | 41 | relogcld 25511 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(log‘𝑛) ∈
ℝ) |
43 | 42 | recnd 10861 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(log‘𝑛) ∈
ℂ) |
44 | 40, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℂ) |
45 | 38, 44 | fsumcl 15297 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ) |
46 | | fzfid 13546 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...(𝑁 − 𝐾)) ∈ Fin) |
47 | | elfznn 13141 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(𝑁 − 𝐾)) → 𝑛 ∈ ℕ) |
48 | 47 | adantl 485 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁 − 𝐾))) → 𝑛 ∈ ℕ) |
49 | 48, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁 − 𝐾))) → (log‘𝑛) ∈ ℂ) |
50 | 46, 49 | fsumcl 15297 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) ∈ ℂ) |
51 | | efsub 15661 |
. . . . . . 7
⊢
((Σ𝑛 ∈
(1...𝑁)(log‘𝑛) ∈ ℂ ∧
Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) ∈ ℂ) →
(exp‘(Σ𝑛 ∈
(1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
52 | 45, 50, 51 | syl2anc 587 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
53 | 24 | nn0red 12151 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℝ) |
54 | 53 | ltp1d 11762 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) < ((𝑁 − 𝐾) + 1)) |
55 | | fzdisj 13139 |
. . . . . . . . . . 11
⊢ ((𝑁 − 𝐾) < ((𝑁 − 𝐾) + 1) → ((1...(𝑁 − 𝐾)) ∩ (((𝑁 − 𝐾) + 1)...𝑁)) = ∅) |
56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1...(𝑁 − 𝐾)) ∩ (((𝑁 − 𝐾) + 1)...𝑁)) = ∅) |
57 | | fznn0sub2 13219 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
58 | 57 | adantl 485 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
59 | | elfzle2 13116 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 𝐾) ∈ (0...𝑁) → (𝑁 − 𝐾) ≤ 𝑁) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ≤ 𝑁) |
61 | 60 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ≤ 𝑁) |
62 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈ ℕ) |
63 | | nnuz 12477 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
64 | 62, 63 | eleqtrdi 2848 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈
(ℤ≥‘1)) |
65 | | nnz 12199 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
66 | 65 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → 𝑁 ∈ ℤ) |
67 | | elfz5 13104 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 − 𝐾) ∈ (ℤ≥‘1)
∧ 𝑁 ∈ ℤ)
→ ((𝑁 − 𝐾) ∈ (1...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
68 | 64, 66, 67 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → ((𝑁 − 𝐾) ∈ (1...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
69 | 61, 68 | mpbird 260 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈ (1...𝑁)) |
70 | | fzsplit 13138 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 𝐾) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
71 | 69, 70 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
72 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (𝑁 − 𝐾) = 0) |
73 | 72 | oveq2d 7229 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...(𝑁 − 𝐾)) = (1...0)) |
74 | | fz10 13133 |
. . . . . . . . . . . . . 14
⊢ (1...0) =
∅ |
75 | 73, 74 | eqtrdi 2794 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...(𝑁 − 𝐾)) = ∅) |
76 | 75 | uneq1d 4076 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (∅ ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
77 | | uncom 4067 |
. . . . . . . . . . . . . 14
⊢ (∅
∪ (((𝑁 − 𝐾) + 1)...𝑁)) = ((((𝑁 − 𝐾) + 1)...𝑁) ∪ ∅) |
78 | | un0 4305 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 − 𝐾) + 1)...𝑁) ∪ ∅) = (((𝑁 − 𝐾) + 1)...𝑁) |
79 | 77, 78 | eqtri 2765 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (((𝑁 − 𝐾) + 1)...𝑁) |
80 | 72 | oveq1d 7228 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((𝑁 − 𝐾) + 1) = (0 + 1)) |
81 | | 1e0p1 12335 |
. . . . . . . . . . . . . . 15
⊢ 1 = (0 +
1) |
82 | 80, 81 | eqtr4di 2796 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((𝑁 − 𝐾) + 1) = 1) |
83 | 82 | oveq1d 7228 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (((𝑁 − 𝐾) + 1)...𝑁) = (1...𝑁)) |
84 | 79, 83 | syl5eq 2790 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (∅ ∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (1...𝑁)) |
85 | 76, 84 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
86 | | elnn0 12092 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 𝐾) ∈ ℕ0 ↔ ((𝑁 − 𝐾) ∈ ℕ ∨ (𝑁 − 𝐾) = 0)) |
87 | 24, 86 | sylib 221 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) ∈ ℕ ∨ (𝑁 − 𝐾) = 0)) |
88 | 71, 85, 87 | mpjaodan 959 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
89 | 56, 88, 38, 44 | fsumsplit 15305 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
90 | 89 | oveq1d 7228 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) = ((Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
91 | | fzfid 13546 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁 − 𝐾) + 1)...𝑁) ∈ Fin) |
92 | | nn0p1nn 12129 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 𝐾) ∈ ℕ0 → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
93 | 24, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
94 | | elfzuz 13108 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁) → 𝑛 ∈ (ℤ≥‘((𝑁 − 𝐾) + 1))) |
95 | | eluznn 12514 |
. . . . . . . . . . . 12
⊢ ((((𝑁 − 𝐾) + 1) ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘((𝑁 − 𝐾) + 1))) → 𝑛 ∈ ℕ) |
96 | 93, 94, 95 | syl2an 599 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑛 ∈ ℕ) |
97 | 96, 43 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘𝑛) ∈ ℂ) |
98 | 91, 97 | fsumcl 15297 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ) |
99 | 50, 98 | pncan2d 11191 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) = Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) |
100 | 90, 99 | eqtr2d 2778 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
101 | 100 | fveq2d 6721 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) = (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
102 | 21 | nnne0d 11880 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ≠ 0) |
103 | | eflog 25465 |
. . . . . . . . 9
⊢
(((!‘𝑁) ∈
ℂ ∧ (!‘𝑁)
≠ 0) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁)) |
104 | 22, 102, 103 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘𝑁))) = (!‘𝑁)) |
105 | | logfac 25489 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) |
106 | 20, 105 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) |
107 | 106 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘𝑁))) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛))) |
108 | 104, 107 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛))) |
109 | | eflog 25465 |
. . . . . . . . 9
⊢
(((!‘(𝑁
− 𝐾)) ∈ ℂ
∧ (!‘(𝑁 −
𝐾)) ≠ 0) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (!‘(𝑁 − 𝐾))) |
110 | 26, 27, 109 | syl2anc 587 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (!‘(𝑁 − 𝐾))) |
111 | | logfac 25489 |
. . . . . . . . . 10
⊢ ((𝑁 − 𝐾) ∈ ℕ0 →
(log‘(!‘(𝑁
− 𝐾))) = Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) |
112 | 24, 111 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘(𝑁 − 𝐾))) = Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) |
113 | 112 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
114 | 110, 113 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) = (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
115 | 108, 114 | oveq12d 7231 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁 − 𝐾))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
116 | 52, 101, 115 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) = ((!‘𝑁) / (!‘(𝑁 − 𝐾)))) |
117 | 32, 37, 116 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
118 | 19, 117 | eqtrd 2777 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
119 | | birthday.s |
. . . . . . . 8
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
120 | | mapvalg 8518 |
. . . . . . . . 9
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝐾) ∈ Fin)
→ ((1...𝑁)
↑m (1...𝐾))
= {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
121 | 4, 3, 120 | mp2an 692 |
. . . . . . . 8
⊢
((1...𝑁)
↑m (1...𝐾))
= {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
122 | 119, 121 | eqtr4i 2768 |
. . . . . . 7
⊢ 𝑆 = ((1...𝑁) ↑m (1...𝐾)) |
123 | 122 | fveq2i 6720 |
. . . . . 6
⊢
(♯‘𝑆) =
(♯‘((1...𝑁)
↑m (1...𝐾))) |
124 | | hashmap 14002 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝐾) ∈ Fin)
→ (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))) |
125 | 4, 3, 124 | mp2an 692 |
. . . . . 6
⊢
(♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) |
126 | 123, 125 | eqtri 2765 |
. . . . 5
⊢
(♯‘𝑆) =
((♯‘(1...𝑁))↑(♯‘(1...𝐾))) |
127 | 16, 11 | oveq12d 7231 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) = (𝑁↑𝐾)) |
128 | 126, 127 | syl5eq 2790 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (𝑁↑𝐾)) |
129 | | nncn 11838 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
130 | 129 | adantr 484 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℂ) |
131 | | nnne0 11864 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
132 | 131 | adantr 484 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ≠ 0) |
133 | | elfzelz 13112 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) |
134 | 133 | adantl 485 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ) |
135 | | explog 25482 |
. . . . 5
⊢ ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁↑𝐾) = (exp‘(𝐾 · (log‘𝑁)))) |
136 | 130, 132,
134, 135 | syl3anc 1373 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁↑𝐾) = (exp‘(𝐾 · (log‘𝑁)))) |
137 | 128, 136 | eqtrd 2777 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (exp‘(𝐾 · (log‘𝑁)))) |
138 | 118, 137 | oveq12d 7231 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
139 | 9 | nn0cnd 12152 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℂ) |
140 | | nnrp 12597 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
141 | 140 | adantr 484 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈
ℝ+) |
142 | 141 | relogcld 25511 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℝ) |
143 | 142 | recnd 10861 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℂ) |
144 | 139, 143 | mulcld 10853 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 · (log‘𝑁)) ∈ ℂ) |
145 | | efsub 15661 |
. . 3
⊢
((Σ𝑛 ∈
(((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ ∧ (𝐾 · (log‘𝑁)) ∈ ℂ) →
(exp‘(Σ𝑛 ∈
(((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
146 | 98, 144, 145 | syl2anc 587 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
147 | | relogdiv 25481 |
. . . . . . 7
⊢ ((𝑛 ∈ ℝ+
∧ 𝑁 ∈
ℝ+) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
148 | 41, 141, 147 | syl2anr 600 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ ℕ) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
149 | 96, 148 | syldan 594 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
150 | 149 | sumeq2dv 15267 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁))) |
151 | 65 | adantr 484 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
152 | 24 | nn0zd 12280 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℤ) |
153 | 152 | peano2zd 12285 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) + 1) ∈ ℤ) |
154 | 96 | nnrpd 12626 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑛 ∈ ℝ+) |
155 | 141 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑁 ∈
ℝ+) |
156 | 154, 155 | rpdivcld 12645 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (𝑛 / 𝑁) ∈
ℝ+) |
157 | 156 | relogcld 25511 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℝ) |
158 | 157 | recnd 10861 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℂ) |
159 | | fvoveq1 7236 |
. . . . . 6
⊢ (𝑛 = (𝑁 − 𝑘) → (log‘(𝑛 / 𝑁)) = (log‘((𝑁 − 𝑘) / 𝑁))) |
160 | 151, 153,
151, 158, 159 | fsumrev 15343 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1)))(log‘((𝑁 − 𝑘) / 𝑁))) |
161 | 130 | subidd 11177 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝑁) = 0) |
162 | | 1cnd 10828 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℂ) |
163 | 130, 139,
162 | subsubd 11217 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝐾 − 1)) = ((𝑁 − 𝐾) + 1)) |
164 | 163 | oveq2d 7229 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝑁 − ((𝑁 − 𝐾) + 1))) |
165 | | ax-1cn 10787 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
166 | | subcl 11077 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐾 −
1) ∈ ℂ) |
167 | 139, 165,
166 | sylancl 589 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 − 1) ∈ ℂ) |
168 | 130, 167 | nncand 11194 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝐾 − 1)) |
169 | 164, 168 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − ((𝑁 − 𝐾) + 1)) = (𝐾 − 1)) |
170 | 161, 169 | oveq12d 7231 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1))) = (0...(𝐾 − 1))) |
171 | 130 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ) |
172 | | elfznn0 13205 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0) |
173 | 172 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0) |
174 | 173 | nn0cnd 12152 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ) |
175 | 132 | adantr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ≠ 0) |
176 | 171, 174,
171, 175 | divsubdird 11647 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 − 𝑘) / 𝑁) = ((𝑁 / 𝑁) − (𝑘 / 𝑁))) |
177 | 171, 175 | dividd 11606 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 / 𝑁) = 1) |
178 | 177 | oveq1d 7228 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 / 𝑁) − (𝑘 / 𝑁)) = (1 − (𝑘 / 𝑁))) |
179 | 176, 178 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 − 𝑘) / 𝑁) = (1 − (𝑘 / 𝑁))) |
180 | 179 | fveq2d 6721 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘((𝑁 − 𝑘) / 𝑁)) = (log‘(1 − (𝑘 / 𝑁)))) |
181 | 170, 180 | sumeq12rdv 15271 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑘 ∈ ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1)))(log‘((𝑁 − 𝑘) / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
182 | 160, 181 | eqtrd 2777 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
183 | 143 | adantr 484 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘𝑁) ∈ ℂ) |
184 | 91, 97, 183 | fsumsub 15352 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁))) |
185 | | fsumconst 15354 |
. . . . . . . 8
⊢
(((((𝑁 − 𝐾) + 1)...𝑁) ∈ Fin ∧ (log‘𝑁) ∈ ℂ) →
Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁))) |
186 | 91, 143, 185 | syl2anc 587 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁))) |
187 | | 1zzd 12208 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℤ) |
188 | | fzen 13129 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ 𝐾
∈ ℤ ∧ (𝑁
− 𝐾) ∈ ℤ)
→ (1...𝐾) ≈ ((1
+ (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾)))) |
189 | 187, 134,
152, 188 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ ((1 + (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾)))) |
190 | 24 | nn0cnd 12152 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℂ) |
191 | | addcom 11018 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ (𝑁
− 𝐾) ∈ ℂ)
→ (1 + (𝑁 −
𝐾)) = ((𝑁 − 𝐾) + 1)) |
192 | 165, 190,
191 | sylancr 590 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1 + (𝑁 − 𝐾)) = ((𝑁 − 𝐾) + 1)) |
193 | 139, 130 | pncan3d 11192 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 + (𝑁 − 𝐾)) = 𝑁) |
194 | 192, 193 | oveq12d 7231 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1 + (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾))) = (((𝑁 − 𝐾) + 1)...𝑁)) |
195 | 189, 194 | breqtrd 5079 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ (((𝑁 − 𝐾) + 1)...𝑁)) |
196 | | hasheni 13914 |
. . . . . . . . . 10
⊢
((1...𝐾) ≈
(((𝑁 − 𝐾) + 1)...𝑁) → (♯‘(1...𝐾)) = (♯‘(((𝑁 − 𝐾) + 1)...𝑁))) |
197 | 195, 196 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = (♯‘(((𝑁 − 𝐾) + 1)...𝑁))) |
198 | 197, 11 | eqtr3d 2779 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(((𝑁 − 𝐾) + 1)...𝑁)) = 𝐾) |
199 | 198 | oveq1d 7228 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁)) = (𝐾 · (log‘𝑁))) |
200 | 186, 199 | eqtrd 2777 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = (𝐾 · (log‘𝑁))) |
201 | 200 | oveq2d 7229 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) |
202 | 184, 201 | eqtrd 2777 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) |
203 | 150, 182,
202 | 3eqtr3rd 2786 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
204 | 203 | fveq2d 6721 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) |
205 | 138, 146,
204 | 3eqtr2d 2783 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) |