| Step | Hyp | Ref
| Expression |
| 1 | | birthday.t |
. . . . . . 7
⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} |
| 2 | 1 | fveq2i 6909 |
. . . . . 6
⊢
(♯‘𝑇) =
(♯‘{𝑓 ∣
𝑓:(1...𝐾)–1-1→(1...𝑁)}) |
| 3 | | fzfi 14013 |
. . . . . . 7
⊢
(1...𝐾) ∈
Fin |
| 4 | | fzfi 14013 |
. . . . . . 7
⊢
(1...𝑁) ∈
Fin |
| 5 | | hashf1 14496 |
. . . . . . 7
⊢
(((1...𝐾) ∈ Fin
∧ (1...𝑁) ∈ Fin)
→ (♯‘{𝑓
∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) ·
((♯‘(1...𝑁))C(♯‘(1...𝐾))))) |
| 6 | 3, 4, 5 | mp2an 692 |
. . . . . 6
⊢
(♯‘{𝑓
∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) ·
((♯‘(1...𝑁))C(♯‘(1...𝐾)))) |
| 7 | 2, 6 | eqtri 2765 |
. . . . 5
⊢
(♯‘𝑇) =
((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) |
| 8 | | elfznn0 13660 |
. . . . . . . . 9
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈
ℕ0) |
| 9 | 8 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈
ℕ0) |
| 10 | | hashfz1 14385 |
. . . . . . . 8
⊢ (𝐾 ∈ ℕ0
→ (♯‘(1...𝐾)) = 𝐾) |
| 11 | 9, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = 𝐾) |
| 12 | 11 | fveq2d 6910 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(♯‘(1...𝐾))) = (!‘𝐾)) |
| 13 | | nnnn0 12533 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
| 14 | | hashfz1 14385 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (♯‘(1...𝑁)) = 𝑁) |
| 15 | 13, 14 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(♯‘(1...𝑁)) =
𝑁) |
| 16 | 15 | adantr 480 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝑁)) = 𝑁) |
| 17 | 16, 11 | oveq12d 7449 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))C(♯‘(1...𝐾))) = (𝑁C𝐾)) |
| 18 | 12, 17 | oveq12d 7449 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) = ((!‘𝐾) · (𝑁C𝐾))) |
| 19 | 7, 18 | eqtrid 2789 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = ((!‘𝐾) · (𝑁C𝐾))) |
| 20 | 13 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈
ℕ0) |
| 21 | 20 | faccld 14323 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ) |
| 22 | 21 | nncnd 12282 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ) |
| 23 | | fznn0sub 13596 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈
ℕ0) |
| 24 | 23 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈
ℕ0) |
| 25 | 24 | faccld 14323 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ∈ ℕ) |
| 26 | 25 | nncnd 12282 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ∈ ℂ) |
| 27 | 25 | nnne0d 12316 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) ≠ 0) |
| 28 | 22, 26, 27 | divcld 12043 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁 − 𝐾))) ∈ ℂ) |
| 29 | 9 | faccld 14323 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ) |
| 30 | 29 | nncnd 12282 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ) |
| 31 | 29 | nnne0d 12316 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0) |
| 32 | 28, 30, 31 | divcan2d 12045 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾))) = ((!‘𝑁) / (!‘(𝑁 − 𝐾)))) |
| 33 | | bcval2 14344 |
. . . . . . . 8
⊢ (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 34 | 33 | adantl 481 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 35 | 22, 26, 30, 27, 31 | divdiv1d 12074 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾)) = ((!‘𝑁) / ((!‘(𝑁 − 𝐾)) · (!‘𝐾)))) |
| 36 | 34, 35 | eqtr4d 2780 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾))) |
| 37 | 36 | oveq2d 7447 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁 − 𝐾))) / (!‘𝐾)))) |
| 38 | | fzfid 14014 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin) |
| 39 | | elfznn 13593 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ) |
| 40 | 39 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ) |
| 41 | | nnrp 13046 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ → 𝑛 ∈
ℝ+) |
| 42 | 41 | relogcld 26665 |
. . . . . . . . . 10
⊢ (𝑛 ∈ ℕ →
(log‘𝑛) ∈
ℝ) |
| 43 | 42 | recnd 11289 |
. . . . . . . . 9
⊢ (𝑛 ∈ ℕ →
(log‘𝑛) ∈
ℂ) |
| 44 | 40, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℂ) |
| 45 | 38, 44 | fsumcl 15769 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ) |
| 46 | | fzfid 14014 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...(𝑁 − 𝐾)) ∈ Fin) |
| 47 | | elfznn 13593 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (1...(𝑁 − 𝐾)) → 𝑛 ∈ ℕ) |
| 48 | 47 | adantl 481 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁 − 𝐾))) → 𝑛 ∈ ℕ) |
| 49 | 48, 43 | syl 17 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁 − 𝐾))) → (log‘𝑛) ∈ ℂ) |
| 50 | 46, 49 | fsumcl 15769 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) ∈ ℂ) |
| 51 | | efsub 16136 |
. . . . . . 7
⊢
((Σ𝑛 ∈
(1...𝑁)(log‘𝑛) ∈ ℂ ∧
Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) ∈ ℂ) →
(exp‘(Σ𝑛 ∈
(1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
| 52 | 45, 50, 51 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
| 53 | 24 | nn0red 12588 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℝ) |
| 54 | 53 | ltp1d 12198 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) < ((𝑁 − 𝐾) + 1)) |
| 55 | | fzdisj 13591 |
. . . . . . . . . . 11
⊢ ((𝑁 − 𝐾) < ((𝑁 − 𝐾) + 1) → ((1...(𝑁 − 𝐾)) ∩ (((𝑁 − 𝐾) + 1)...𝑁)) = ∅) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1...(𝑁 − 𝐾)) ∩ (((𝑁 − 𝐾) + 1)...𝑁)) = ∅) |
| 57 | | fznn0sub2 13675 |
. . . . . . . . . . . . . . . 16
⊢ (𝐾 ∈ (0...𝑁) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
| 58 | 57 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ (0...𝑁)) |
| 59 | | elfzle2 13568 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 − 𝐾) ∈ (0...𝑁) → (𝑁 − 𝐾) ≤ 𝑁) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ≤ 𝑁) |
| 61 | 60 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ≤ 𝑁) |
| 62 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈ ℕ) |
| 63 | | nnuz 12921 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
| 64 | 62, 63 | eleqtrdi 2851 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈
(ℤ≥‘1)) |
| 65 | | nnz 12634 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℤ) |
| 66 | 65 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → 𝑁 ∈ ℤ) |
| 67 | | elfz5 13556 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 − 𝐾) ∈ (ℤ≥‘1)
∧ 𝑁 ∈ ℤ)
→ ((𝑁 − 𝐾) ∈ (1...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 68 | 64, 66, 67 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → ((𝑁 − 𝐾) ∈ (1...𝑁) ↔ (𝑁 − 𝐾) ≤ 𝑁)) |
| 69 | 61, 68 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (𝑁 − 𝐾) ∈ (1...𝑁)) |
| 70 | | fzsplit 13590 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 𝐾) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
| 71 | 69, 70 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) ∈ ℕ) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
| 72 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (𝑁 − 𝐾) = 0) |
| 73 | 72 | oveq2d 7447 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...(𝑁 − 𝐾)) = (1...0)) |
| 74 | | fz10 13585 |
. . . . . . . . . . . . . 14
⊢ (1...0) =
∅ |
| 75 | 73, 74 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...(𝑁 − 𝐾)) = ∅) |
| 76 | 75 | uneq1d 4167 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (∅ ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
| 77 | | uncom 4158 |
. . . . . . . . . . . . . 14
⊢ (∅
∪ (((𝑁 − 𝐾) + 1)...𝑁)) = ((((𝑁 − 𝐾) + 1)...𝑁) ∪ ∅) |
| 78 | | un0 4394 |
. . . . . . . . . . . . . 14
⊢ ((((𝑁 − 𝐾) + 1)...𝑁) ∪ ∅) = (((𝑁 − 𝐾) + 1)...𝑁) |
| 79 | 77, 78 | eqtri 2765 |
. . . . . . . . . . . . 13
⊢ (∅
∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (((𝑁 − 𝐾) + 1)...𝑁) |
| 80 | 72 | oveq1d 7446 |
. . . . . . . . . . . . . . 15
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((𝑁 − 𝐾) + 1) = (0 + 1)) |
| 81 | | 1e0p1 12775 |
. . . . . . . . . . . . . . 15
⊢ 1 = (0 +
1) |
| 82 | 80, 81 | eqtr4di 2795 |
. . . . . . . . . . . . . 14
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → ((𝑁 − 𝐾) + 1) = 1) |
| 83 | 82 | oveq1d 7446 |
. . . . . . . . . . . . 13
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (((𝑁 − 𝐾) + 1)...𝑁) = (1...𝑁)) |
| 84 | 79, 83 | eqtrid 2789 |
. . . . . . . . . . . 12
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (∅ ∪ (((𝑁 − 𝐾) + 1)...𝑁)) = (1...𝑁)) |
| 85 | 76, 84 | eqtr2d 2778 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁 − 𝐾) = 0) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
| 86 | | elnn0 12528 |
. . . . . . . . . . . 12
⊢ ((𝑁 − 𝐾) ∈ ℕ0 ↔ ((𝑁 − 𝐾) ∈ ℕ ∨ (𝑁 − 𝐾) = 0)) |
| 87 | 24, 86 | sylib 218 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) ∈ ℕ ∨ (𝑁 − 𝐾) = 0)) |
| 88 | 71, 85, 87 | mpjaodan 961 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) = ((1...(𝑁 − 𝐾)) ∪ (((𝑁 − 𝐾) + 1)...𝑁))) |
| 89 | 56, 88, 38, 44 | fsumsplit 15777 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
| 90 | 89 | oveq1d 7446 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) = ((Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
| 91 | | fzfid 14014 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁 − 𝐾) + 1)...𝑁) ∈ Fin) |
| 92 | | nn0p1nn 12565 |
. . . . . . . . . . . . 13
⊢ ((𝑁 − 𝐾) ∈ ℕ0 → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
| 93 | 24, 92 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) + 1) ∈ ℕ) |
| 94 | | elfzuz 13560 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁) → 𝑛 ∈ (ℤ≥‘((𝑁 − 𝐾) + 1))) |
| 95 | | eluznn 12960 |
. . . . . . . . . . . 12
⊢ ((((𝑁 − 𝐾) + 1) ∈ ℕ ∧ 𝑛 ∈
(ℤ≥‘((𝑁 − 𝐾) + 1))) → 𝑛 ∈ ℕ) |
| 96 | 93, 94, 95 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑛 ∈ ℕ) |
| 97 | 96, 43 | syl 17 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘𝑛) ∈ ℂ) |
| 98 | 91, 97 | fsumcl 15769 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ) |
| 99 | 50, 98 | pncan2d 11622 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) = Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) |
| 100 | 90, 99 | eqtr2d 2778 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
| 101 | 100 | fveq2d 6910 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) = (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
| 102 | 21 | nnne0d 12316 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ≠ 0) |
| 103 | | eflog 26618 |
. . . . . . . . 9
⊢
(((!‘𝑁) ∈
ℂ ∧ (!‘𝑁)
≠ 0) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁)) |
| 104 | 22, 102, 103 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘𝑁))) = (!‘𝑁)) |
| 105 | | logfac 26643 |
. . . . . . . . . 10
⊢ (𝑁 ∈ ℕ0
→ (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) |
| 106 | 20, 105 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) |
| 107 | 106 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘𝑁))) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛))) |
| 108 | 104, 107 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛))) |
| 109 | | eflog 26618 |
. . . . . . . . 9
⊢
(((!‘(𝑁
− 𝐾)) ∈ ℂ
∧ (!‘(𝑁 −
𝐾)) ≠ 0) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (!‘(𝑁 − 𝐾))) |
| 110 | 26, 27, 109 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (!‘(𝑁 − 𝐾))) |
| 111 | | logfac 26643 |
. . . . . . . . . 10
⊢ ((𝑁 − 𝐾) ∈ ℕ0 →
(log‘(!‘(𝑁
− 𝐾))) = Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) |
| 112 | 24, 111 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘(𝑁 − 𝐾))) = Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)) |
| 113 | 112 | fveq2d 6910 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) →
(exp‘(log‘(!‘(𝑁 − 𝐾)))) = (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
| 114 | 110, 113 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁 − 𝐾)) = (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛))) |
| 115 | 108, 114 | oveq12d 7449 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁 − 𝐾))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁 − 𝐾))(log‘𝑛)))) |
| 116 | 52, 101, 115 | 3eqtr4d 2787 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) = ((!‘𝑁) / (!‘(𝑁 − 𝐾)))) |
| 117 | 32, 37, 116 | 3eqtr4d 2787 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
| 118 | 19, 117 | eqtrd 2777 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = (exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛))) |
| 119 | | birthday.s |
. . . . . . . 8
⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 120 | | mapvalg 8876 |
. . . . . . . . 9
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝐾) ∈ Fin)
→ ((1...𝑁)
↑m (1...𝐾))
= {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) |
| 121 | 4, 3, 120 | mp2an 692 |
. . . . . . . 8
⊢
((1...𝑁)
↑m (1...𝐾))
= {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 122 | 119, 121 | eqtr4i 2768 |
. . . . . . 7
⊢ 𝑆 = ((1...𝑁) ↑m (1...𝐾)) |
| 123 | 122 | fveq2i 6909 |
. . . . . 6
⊢
(♯‘𝑆) =
(♯‘((1...𝑁)
↑m (1...𝐾))) |
| 124 | | hashmap 14474 |
. . . . . . 7
⊢
(((1...𝑁) ∈ Fin
∧ (1...𝐾) ∈ Fin)
→ (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))) |
| 125 | 4, 3, 124 | mp2an 692 |
. . . . . 6
⊢
(♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) |
| 126 | 123, 125 | eqtri 2765 |
. . . . 5
⊢
(♯‘𝑆) =
((♯‘(1...𝑁))↑(♯‘(1...𝐾))) |
| 127 | 16, 11 | oveq12d 7449 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) = (𝑁↑𝐾)) |
| 128 | 126, 127 | eqtrid 2789 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (𝑁↑𝐾)) |
| 129 | | nncn 12274 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℂ) |
| 130 | 129 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℂ) |
| 131 | | nnne0 12300 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
| 132 | 131 | adantr 480 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ≠ 0) |
| 133 | | elfzelz 13564 |
. . . . . 6
⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) |
| 134 | 133 | adantl 481 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ) |
| 135 | | explog 26636 |
. . . . 5
⊢ ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁↑𝐾) = (exp‘(𝐾 · (log‘𝑁)))) |
| 136 | 130, 132,
134, 135 | syl3anc 1373 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁↑𝐾) = (exp‘(𝐾 · (log‘𝑁)))) |
| 137 | 128, 136 | eqtrd 2777 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (exp‘(𝐾 · (log‘𝑁)))) |
| 138 | 118, 137 | oveq12d 7449 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
| 139 | 9 | nn0cnd 12589 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℂ) |
| 140 | | nnrp 13046 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℝ+) |
| 141 | 140 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈
ℝ+) |
| 142 | 141 | relogcld 26665 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℝ) |
| 143 | 142 | recnd 11289 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℂ) |
| 144 | 139, 143 | mulcld 11281 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 · (log‘𝑁)) ∈ ℂ) |
| 145 | | efsub 16136 |
. . 3
⊢
((Σ𝑛 ∈
(((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ ∧ (𝐾 · (log‘𝑁)) ∈ ℂ) →
(exp‘(Σ𝑛 ∈
(((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
| 146 | 98, 144, 145 | syl2anc 584 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁))))) |
| 147 | | relogdiv 26635 |
. . . . . . 7
⊢ ((𝑛 ∈ ℝ+
∧ 𝑁 ∈
ℝ+) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
| 148 | 41, 141, 147 | syl2anr 597 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ ℕ) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
| 149 | 96, 148 | syldan 591 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁))) |
| 150 | 149 | sumeq2dv 15738 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁))) |
| 151 | 65 | adantr 480 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ) |
| 152 | 24 | nn0zd 12639 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℤ) |
| 153 | 152 | peano2zd 12725 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝐾) + 1) ∈ ℤ) |
| 154 | 96 | nnrpd 13075 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑛 ∈ ℝ+) |
| 155 | 141 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → 𝑁 ∈
ℝ+) |
| 156 | 154, 155 | rpdivcld 13094 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (𝑛 / 𝑁) ∈
ℝ+) |
| 157 | 156 | relogcld 26665 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℝ) |
| 158 | 157 | recnd 11289 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℂ) |
| 159 | | fvoveq1 7454 |
. . . . . 6
⊢ (𝑛 = (𝑁 − 𝑘) → (log‘(𝑛 / 𝑁)) = (log‘((𝑁 − 𝑘) / 𝑁))) |
| 160 | 151, 153,
151, 158, 159 | fsumrev 15815 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1)))(log‘((𝑁 − 𝑘) / 𝑁))) |
| 161 | 130 | subidd 11608 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝑁) = 0) |
| 162 | | 1cnd 11256 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℂ) |
| 163 | 130, 139,
162 | subsubd 11648 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝐾 − 1)) = ((𝑁 − 𝐾) + 1)) |
| 164 | 163 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝑁 − ((𝑁 − 𝐾) + 1))) |
| 165 | | ax-1cn 11213 |
. . . . . . . . . 10
⊢ 1 ∈
ℂ |
| 166 | | subcl 11507 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℂ ∧ 1 ∈
ℂ) → (𝐾 −
1) ∈ ℂ) |
| 167 | 139, 165,
166 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 − 1) ∈ ℂ) |
| 168 | 130, 167 | nncand 11625 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝐾 − 1)) |
| 169 | 164, 168 | eqtr3d 2779 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − ((𝑁 − 𝐾) + 1)) = (𝐾 − 1)) |
| 170 | 161, 169 | oveq12d 7449 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1))) = (0...(𝐾 − 1))) |
| 171 | 130 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ) |
| 172 | | elfznn0 13660 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0) |
| 173 | 172 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0) |
| 174 | 173 | nn0cnd 12589 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ) |
| 175 | 132 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ≠ 0) |
| 176 | 171, 174,
171, 175 | divsubdird 12082 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 − 𝑘) / 𝑁) = ((𝑁 / 𝑁) − (𝑘 / 𝑁))) |
| 177 | 171, 175 | dividd 12041 |
. . . . . . . . 9
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 / 𝑁) = 1) |
| 178 | 177 | oveq1d 7446 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 / 𝑁) − (𝑘 / 𝑁)) = (1 − (𝑘 / 𝑁))) |
| 179 | 176, 178 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 − 𝑘) / 𝑁) = (1 − (𝑘 / 𝑁))) |
| 180 | 179 | fveq2d 6910 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘((𝑁 − 𝑘) / 𝑁)) = (log‘(1 − (𝑘 / 𝑁)))) |
| 181 | 170, 180 | sumeq12rdv 15743 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑘 ∈ ((𝑁 − 𝑁)...(𝑁 − ((𝑁 − 𝐾) + 1)))(log‘((𝑁 − 𝑘) / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
| 182 | 160, 181 | eqtrd 2777 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
| 183 | 143 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)) → (log‘𝑁) ∈ ℂ) |
| 184 | 91, 97, 183 | fsumsub 15824 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁))) |
| 185 | | fsumconst 15826 |
. . . . . . . 8
⊢
(((((𝑁 − 𝐾) + 1)...𝑁) ∈ Fin ∧ (log‘𝑁) ∈ ℂ) →
Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁))) |
| 186 | 91, 143, 185 | syl2anc 584 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁))) |
| 187 | | 1zzd 12648 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℤ) |
| 188 | | fzen 13581 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ 𝐾
∈ ℤ ∧ (𝑁
− 𝐾) ∈ ℤ)
→ (1...𝐾) ≈ ((1
+ (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾)))) |
| 189 | 187, 134,
152, 188 | syl3anc 1373 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ ((1 + (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾)))) |
| 190 | 24 | nn0cnd 12589 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − 𝐾) ∈ ℂ) |
| 191 | | addcom 11447 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ (𝑁
− 𝐾) ∈ ℂ)
→ (1 + (𝑁 −
𝐾)) = ((𝑁 − 𝐾) + 1)) |
| 192 | 165, 190,
191 | sylancr 587 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1 + (𝑁 − 𝐾)) = ((𝑁 − 𝐾) + 1)) |
| 193 | 139, 130 | pncan3d 11623 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 + (𝑁 − 𝐾)) = 𝑁) |
| 194 | 192, 193 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1 + (𝑁 − 𝐾))...(𝐾 + (𝑁 − 𝐾))) = (((𝑁 − 𝐾) + 1)...𝑁)) |
| 195 | 189, 194 | breqtrd 5169 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ (((𝑁 − 𝐾) + 1)...𝑁)) |
| 196 | | hasheni 14387 |
. . . . . . . . . 10
⊢
((1...𝐾) ≈
(((𝑁 − 𝐾) + 1)...𝑁) → (♯‘(1...𝐾)) = (♯‘(((𝑁 − 𝐾) + 1)...𝑁))) |
| 197 | 195, 196 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = (♯‘(((𝑁 − 𝐾) + 1)...𝑁))) |
| 198 | 197, 11 | eqtr3d 2779 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(((𝑁 − 𝐾) + 1)...𝑁)) = 𝐾) |
| 199 | 198 | oveq1d 7446 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(((𝑁 − 𝐾) + 1)...𝑁)) · (log‘𝑁)) = (𝐾 · (log‘𝑁))) |
| 200 | 186, 199 | eqtrd 2777 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁) = (𝐾 · (log‘𝑁))) |
| 201 | 200 | oveq2d 7447 |
. . . . 5
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) |
| 202 | 184, 201 | eqtrd 2777 |
. . . 4
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) |
| 203 | 150, 182,
202 | 3eqtr3rd 2786 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))) |
| 204 | 203 | fveq2d 6910 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁 − 𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) |
| 205 | 138, 146,
204 | 3eqtr2d 2783 |
1
⊢ ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))) |