MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem2 Structured version   Visualization version   GIF version

Theorem birthdaylem2 26869
Description: For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Distinct variable groups:   𝑓,𝑘,𝐾   𝑓,𝑁,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)   𝑇(𝑓,𝑘)

Proof of Theorem birthdaylem2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . 7 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
21fveq2i 6864 . . . . . 6 (♯‘𝑇) = (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)})
3 fzfi 13944 . . . . . . 7 (1...𝐾) ∈ Fin
4 fzfi 13944 . . . . . . 7 (1...𝑁) ∈ Fin
5 hashf1 14429 . . . . . . 7 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))))
63, 4, 5mp2an 692 . . . . . 6 (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
72, 6eqtri 2753 . . . . 5 (♯‘𝑇) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
8 elfznn0 13588 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
98adantl 481 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
10 hashfz1 14318 . . . . . . . 8 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
119, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = 𝐾)
1211fveq2d 6865 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(♯‘(1...𝐾))) = (!‘𝐾))
13 nnnn0 12456 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 hashfz1 14318 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
1513, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
1615adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝑁)) = 𝑁)
1716, 11oveq12d 7408 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))C(♯‘(1...𝐾))) = (𝑁C𝐾))
1812, 17oveq12d 7408 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) = ((!‘𝐾) · (𝑁C𝐾)))
197, 18eqtrid 2777 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = ((!‘𝐾) · (𝑁C𝐾)))
2013adantr 480 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2120faccld 14256 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
2221nncnd 12209 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
23 fznn0sub 13524 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
2423adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
2524faccld 14256 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
2625nncnd 12209 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
2725nnne0d 12243 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
2822, 26, 27divcld 11965 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) ∈ ℂ)
299faccld 14256 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
3029nncnd 12209 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
3129nnne0d 12243 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
3228, 30, 31divcan2d 11967 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))) = ((!‘𝑁) / (!‘(𝑁𝐾))))
33 bcval2 14277 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3433adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3522, 26, 30, 27, 31divdiv1d 11996 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3634, 35eqtr4d 2768 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)))
3736oveq2d 7406 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))))
38 fzfid 13945 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
39 elfznn 13521 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
4039adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
41 nnrp 12970 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4241relogcld 26539 . . . . . . . . . 10 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℝ)
4342recnd 11209 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℂ)
4440, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℂ)
4538, 44fsumcl 15706 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ)
46 fzfid 13945 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...(𝑁𝐾)) ∈ Fin)
47 elfznn 13521 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑁𝐾)) → 𝑛 ∈ ℕ)
4847adantl 481 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → 𝑛 ∈ ℕ)
4948, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → (log‘𝑛) ∈ ℂ)
5046, 49fsumcl 15706 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ)
51 efsub 16075 . . . . . . 7 ((Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ ∧ Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5245, 50, 51syl2anc 584 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5324nn0red 12511 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
5453ltp1d 12120 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < ((𝑁𝐾) + 1))
55 fzdisj 13519 . . . . . . . . . . 11 ((𝑁𝐾) < ((𝑁𝐾) + 1) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
5654, 55syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
57 fznn0sub2 13603 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
5857adantl 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ (0...𝑁))
59 elfzle2 13496 . . . . . . . . . . . . . . 15 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ≤ 𝑁)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ≤ 𝑁)
6160adantr 480 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ≤ 𝑁)
62 simpr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ ℕ)
63 nnuz 12843 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6462, 63eleqtrdi 2839 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (ℤ‘1))
65 nnz 12557 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6665ad2antrr 726 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → 𝑁 ∈ ℤ)
67 elfz5 13484 . . . . . . . . . . . . . 14 (((𝑁𝐾) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6864, 66, 67syl2anc 584 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6961, 68mpbird 257 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (1...𝑁))
70 fzsplit 13518 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
7169, 70syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
72 simpr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (𝑁𝐾) = 0)
7372oveq2d 7406 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = (1...0))
74 fz10 13513 . . . . . . . . . . . . . 14 (1...0) = ∅
7573, 74eqtrdi 2781 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = ∅)
7675uneq1d 4133 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)) = (∅ ∪ (((𝑁𝐾) + 1)...𝑁)))
77 uncom 4124 . . . . . . . . . . . . . 14 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = ((((𝑁𝐾) + 1)...𝑁) ∪ ∅)
78 un0 4360 . . . . . . . . . . . . . 14 ((((𝑁𝐾) + 1)...𝑁) ∪ ∅) = (((𝑁𝐾) + 1)...𝑁)
7977, 78eqtri 2753 . . . . . . . . . . . . 13 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (((𝑁𝐾) + 1)...𝑁)
8072oveq1d 7405 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = (0 + 1))
81 1e0p1 12698 . . . . . . . . . . . . . . 15 1 = (0 + 1)
8280, 81eqtr4di 2783 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = 1)
8382oveq1d 7405 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (((𝑁𝐾) + 1)...𝑁) = (1...𝑁))
8479, 83eqtrid 2777 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (1...𝑁))
8576, 84eqtr2d 2766 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
86 elnn0 12451 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8724, 86sylib 218 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8871, 85, 87mpjaodan 960 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
8956, 88, 38, 44fsumsplit 15714 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
9089oveq1d 7405 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
91 fzfid 13945 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁𝐾) + 1)...𝑁) ∈ Fin)
92 nn0p1nn 12488 . . . . . . . . . . . . 13 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
9324, 92syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℕ)
94 elfzuz 13488 . . . . . . . . . . . 12 (𝑛 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1)))
95 eluznn 12884 . . . . . . . . . . . 12 ((((𝑁𝐾) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1))) → 𝑛 ∈ ℕ)
9693, 94, 95syl2an 596 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℕ)
9796, 43syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑛) ∈ ℂ)
9891, 97fsumcl 15706 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ)
9950, 98pncan2d 11542 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛))
10090, 99eqtr2d 2766 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
101100fveq2d 6865 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
10221nnne0d 12243 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ≠ 0)
103 eflog 26492 . . . . . . . . 9 (((!‘𝑁) ∈ ℂ ∧ (!‘𝑁) ≠ 0) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
10422, 102, 103syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
105 logfac 26517 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
10620, 105syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
107106fveq2d 6865 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
108104, 107eqtr3d 2767 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
109 eflog 26492 . . . . . . . . 9 (((!‘(𝑁𝐾)) ∈ ℂ ∧ (!‘(𝑁𝐾)) ≠ 0) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
11026, 27, 109syl2anc 584 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
111 logfac 26517 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ0 → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
11224, 111syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
113112fveq2d 6865 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
114110, 113eqtr3d 2767 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
115108, 114oveq12d 7408 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
11652, 101, 1153eqtr4d 2775 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = ((!‘𝑁) / (!‘(𝑁𝐾))))
11732, 37, 1163eqtr4d 2775 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
11819, 117eqtrd 2765 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
119 birthday.s . . . . . . . 8 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
120 mapvalg 8812 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
1214, 3, 120mp2an 692 . . . . . . . 8 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
122119, 121eqtr4i 2756 . . . . . . 7 𝑆 = ((1...𝑁) ↑m (1...𝐾))
123122fveq2i 6864 . . . . . 6 (♯‘𝑆) = (♯‘((1...𝑁) ↑m (1...𝐾)))
124 hashmap 14407 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾))))
1254, 3, 124mp2an 692 . . . . . 6 (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
126123, 125eqtri 2753 . . . . 5 (♯‘𝑆) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
12716, 11oveq12d 7408 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) = (𝑁𝐾))
128126, 127eqtrid 2777 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (𝑁𝐾))
129 nncn 12201 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
130129adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
131 nnne0 12227 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
132131adantr 480 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ≠ 0)
133 elfzelz 13492 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
134133adantl 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
135 explog 26510 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
136130, 132, 134, 135syl3anc 1373 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
137128, 136eqtrd 2765 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (exp‘(𝐾 · (log‘𝑁))))
138118, 137oveq12d 7408 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
1399nn0cnd 12512 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℂ)
140 nnrp 12970 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
141140adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ+)
142141relogcld 26539 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℝ)
143142recnd 11209 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℂ)
144139, 143mulcld 11201 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 · (log‘𝑁)) ∈ ℂ)
145 efsub 16075 . . 3 ((Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ ∧ (𝐾 · (log‘𝑁)) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
14698, 144, 145syl2anc 584 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
147 relogdiv 26509 . . . . . . 7 ((𝑛 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14841, 141, 147syl2anr 597 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ ℕ) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14996, 148syldan 591 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
150149sumeq2dv 15675 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)))
15165adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
15224nn0zd 12562 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
153152peano2zd 12648 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
15496nnrpd 13000 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℝ+)
155141adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑁 ∈ ℝ+)
156154, 155rpdivcld 13019 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (𝑛 / 𝑁) ∈ ℝ+)
157156relogcld 26539 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℝ)
158157recnd 11209 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℂ)
159 fvoveq1 7413 . . . . . 6 (𝑛 = (𝑁𝑘) → (log‘(𝑛 / 𝑁)) = (log‘((𝑁𝑘) / 𝑁)))
160151, 153, 151, 158, 159fsumrev 15752 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)))
161130subidd 11528 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝑁) = 0)
162 1cnd 11176 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℂ)
163130, 139, 162subsubd 11568 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
164163oveq2d 7406 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝑁 − ((𝑁𝐾) + 1)))
165 ax-1cn 11133 . . . . . . . . . 10 1 ∈ ℂ
166 subcl 11427 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐾 − 1) ∈ ℂ)
167139, 165, 166sylancl 586 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 − 1) ∈ ℂ)
168130, 167nncand 11545 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝐾 − 1))
169164, 168eqtr3d 2767 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − ((𝑁𝐾) + 1)) = (𝐾 − 1))
170161, 169oveq12d 7408 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1))) = (0...(𝐾 − 1)))
171130adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
172 elfznn0 13588 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
173172adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
174173nn0cnd 12512 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
175132adantr 480 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ≠ 0)
176171, 174, 171, 175divsubdird 12004 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = ((𝑁 / 𝑁) − (𝑘 / 𝑁)))
177171, 175dividd 11963 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 / 𝑁) = 1)
178177oveq1d 7405 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 / 𝑁) − (𝑘 / 𝑁)) = (1 − (𝑘 / 𝑁)))
179176, 178eqtrd 2765 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = (1 − (𝑘 / 𝑁)))
180179fveq2d 6865 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘((𝑁𝑘) / 𝑁)) = (log‘(1 − (𝑘 / 𝑁))))
181170, 180sumeq12rdv 15680 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
182160, 181eqtrd 2765 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
183143adantr 480 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑁) ∈ ℂ)
18491, 97, 183fsumsub 15761 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)))
185 fsumconst 15763 . . . . . . . 8 (((((𝑁𝐾) + 1)...𝑁) ∈ Fin ∧ (log‘𝑁) ∈ ℂ) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
18691, 143, 185syl2anc 584 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
187 1zzd 12571 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℤ)
188 fzen 13509 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑁𝐾) ∈ ℤ) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
189187, 134, 152, 188syl3anc 1373 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
19024nn0cnd 12512 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℂ)
191 addcom 11367 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑁𝐾) ∈ ℂ) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
192165, 190, 191sylancr 587 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
193139, 130pncan3d 11543 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 + (𝑁𝐾)) = 𝑁)
194192, 193oveq12d 7408 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))) = (((𝑁𝐾) + 1)...𝑁))
195189, 194breqtrd 5136 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁))
196 hasheni 14320 . . . . . . . . . 10 ((1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
197195, 196syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
198197, 11eqtr3d 2767 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(((𝑁𝐾) + 1)...𝑁)) = 𝐾)
199198oveq1d 7405 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)) = (𝐾 · (log‘𝑁)))
200186, 199eqtrd 2765 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = (𝐾 · (log‘𝑁)))
201200oveq2d 7406 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
202184, 201eqtrd 2765 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
203150, 182, 2023eqtr3rd 2774 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
204203fveq2d 6865 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
205138, 146, 2043eqtr2d 2771 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  {cab 2708  wne 2926  cun 3915  cin 3916  c0 4299   class class class wbr 5110  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390  m cmap 8802  cen 8918  Fincfn 8921  cc 11073  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  cuz 12800  +crp 12958  ...cfz 13475  cexp 14033  !cfa 14245  Ccbc 14274  chash 14302  Σcsu 15659  expce 16034  logclog 26470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472
This theorem is referenced by:  birthdaylem3  26870
  Copyright terms: Public domain W3C validator