MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem2 Structured version   Visualization version   GIF version

Theorem birthdaylem2 26207
Description: For general 𝑁 and 𝐾, count the fraction of injective functions from 1...𝐾 to 1...𝑁. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Distinct variable groups:   𝑓,𝑘,𝐾   𝑓,𝑁,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)   𝑇(𝑓,𝑘)

Proof of Theorem birthdaylem2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 birthday.t . . . . . . 7 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
21fveq2i 6832 . . . . . 6 (♯‘𝑇) = (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)})
3 fzfi 13797 . . . . . . 7 (1...𝐾) ∈ Fin
4 fzfi 13797 . . . . . . 7 (1...𝑁) ∈ Fin
5 hashf1 14275 . . . . . . 7 (((1...𝐾) ∈ Fin ∧ (1...𝑁) ∈ Fin) → (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))))
63, 4, 5mp2an 690 . . . . . 6 (♯‘{𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
72, 6eqtri 2765 . . . . 5 (♯‘𝑇) = ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾))))
8 elfznn0 13454 . . . . . . . . 9 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
98adantl 483 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℕ0)
10 hashfz1 14165 . . . . . . . 8 (𝐾 ∈ ℕ0 → (♯‘(1...𝐾)) = 𝐾)
119, 10syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = 𝐾)
1211fveq2d 6833 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(♯‘(1...𝐾))) = (!‘𝐾))
13 nnnn0 12345 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
14 hashfz1 14165 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (♯‘(1...𝑁)) = 𝑁)
1513, 14syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (♯‘(1...𝑁)) = 𝑁)
1615adantr 482 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝑁)) = 𝑁)
1716, 11oveq12d 7359 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))C(♯‘(1...𝐾))) = (𝑁C𝐾))
1812, 17oveq12d 7359 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘(♯‘(1...𝐾))) · ((♯‘(1...𝑁))C(♯‘(1...𝐾)))) = ((!‘𝐾) · (𝑁C𝐾)))
197, 18eqtrid 2789 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = ((!‘𝐾) · (𝑁C𝐾)))
2013adantr 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℕ0)
2120faccld 14103 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℕ)
2221nncnd 12094 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ∈ ℂ)
23 fznn0sub 13393 . . . . . . . . . 10 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ ℕ0)
2423adantl 483 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℕ0)
2524faccld 14103 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℕ)
2625nncnd 12094 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ∈ ℂ)
2725nnne0d 12128 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) ≠ 0)
2822, 26, 27divcld 11856 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) ∈ ℂ)
299faccld 14103 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℕ)
3029nncnd 12094 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ∈ ℂ)
3129nnne0d 12128 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝐾) ≠ 0)
3228, 30, 31divcan2d 11858 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))) = ((!‘𝑁) / (!‘(𝑁𝐾))))
33 bcval2 14124 . . . . . . . 8 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3433adantl 483 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3522, 26, 30, 27, 31divdiv1d 11887 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)) = ((!‘𝑁) / ((!‘(𝑁𝐾)) · (!‘𝐾))))
3634, 35eqtr4d 2780 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾)))
3736oveq2d 7357 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = ((!‘𝐾) · (((!‘𝑁) / (!‘(𝑁𝐾))) / (!‘𝐾))))
38 fzfid 13798 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) ∈ Fin)
39 elfznn 13390 . . . . . . . . . 10 (𝑛 ∈ (1...𝑁) → 𝑛 ∈ ℕ)
4039adantl 483 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → 𝑛 ∈ ℕ)
41 nnrp 12846 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
4241relogcld 25883 . . . . . . . . . 10 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℝ)
4342recnd 11108 . . . . . . . . 9 (𝑛 ∈ ℕ → (log‘𝑛) ∈ ℂ)
4440, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...𝑁)) → (log‘𝑛) ∈ ℂ)
4538, 44fsumcl 15544 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ)
46 fzfid 13798 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...(𝑁𝐾)) ∈ Fin)
47 elfznn 13390 . . . . . . . . . 10 (𝑛 ∈ (1...(𝑁𝐾)) → 𝑛 ∈ ℕ)
4847adantl 483 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → 𝑛 ∈ ℕ)
4948, 43syl 17 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (1...(𝑁𝐾))) → (log‘𝑛) ∈ ℂ)
5046, 49fsumcl 15544 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ)
51 efsub 15908 . . . . . . 7 ((Σ𝑛 ∈ (1...𝑁)(log‘𝑛) ∈ ℂ ∧ Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5245, 50, 51syl2anc 585 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
5324nn0red 12399 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℝ)
5453ltp1d 12010 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) < ((𝑁𝐾) + 1))
55 fzdisj 13388 . . . . . . . . . . 11 ((𝑁𝐾) < ((𝑁𝐾) + 1) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
5654, 55syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1...(𝑁𝐾)) ∩ (((𝑁𝐾) + 1)...𝑁)) = ∅)
57 fznn0sub2 13468 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (0...𝑁) → (𝑁𝐾) ∈ (0...𝑁))
5857adantl 483 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ (0...𝑁))
59 elfzle2 13365 . . . . . . . . . . . . . . 15 ((𝑁𝐾) ∈ (0...𝑁) → (𝑁𝐾) ≤ 𝑁)
6058, 59syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ≤ 𝑁)
6160adantr 482 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ≤ 𝑁)
62 simpr 486 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ ℕ)
63 nnuz 12726 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
6462, 63eleqtrdi 2848 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (ℤ‘1))
65 nnz 12447 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
6665ad2antrr 724 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → 𝑁 ∈ ℤ)
67 elfz5 13353 . . . . . . . . . . . . . 14 (((𝑁𝐾) ∈ (ℤ‘1) ∧ 𝑁 ∈ ℤ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6864, 66, 67syl2anc 585 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → ((𝑁𝐾) ∈ (1...𝑁) ↔ (𝑁𝐾) ≤ 𝑁))
6961, 68mpbird 257 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (𝑁𝐾) ∈ (1...𝑁))
70 fzsplit 13387 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ (1...𝑁) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
7169, 70syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) ∈ ℕ) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
72 simpr 486 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (𝑁𝐾) = 0)
7372oveq2d 7357 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = (1...0))
74 fz10 13382 . . . . . . . . . . . . . 14 (1...0) = ∅
7573, 74eqtrdi 2793 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...(𝑁𝐾)) = ∅)
7675uneq1d 4113 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)) = (∅ ∪ (((𝑁𝐾) + 1)...𝑁)))
77 uncom 4104 . . . . . . . . . . . . . 14 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = ((((𝑁𝐾) + 1)...𝑁) ∪ ∅)
78 un0 4341 . . . . . . . . . . . . . 14 ((((𝑁𝐾) + 1)...𝑁) ∪ ∅) = (((𝑁𝐾) + 1)...𝑁)
7977, 78eqtri 2765 . . . . . . . . . . . . 13 (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (((𝑁𝐾) + 1)...𝑁)
8072oveq1d 7356 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = (0 + 1))
81 1e0p1 12584 . . . . . . . . . . . . . . 15 1 = (0 + 1)
8280, 81eqtr4di 2795 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → ((𝑁𝐾) + 1) = 1)
8382oveq1d 7356 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (((𝑁𝐾) + 1)...𝑁) = (1...𝑁))
8479, 83eqtrid 2789 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (∅ ∪ (((𝑁𝐾) + 1)...𝑁)) = (1...𝑁))
8576, 84eqtr2d 2778 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ (𝑁𝐾) = 0) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
86 elnn0 12340 . . . . . . . . . . . 12 ((𝑁𝐾) ∈ ℕ0 ↔ ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8724, 86sylib 217 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) ∈ ℕ ∨ (𝑁𝐾) = 0))
8871, 85, 87mpjaodan 957 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝑁) = ((1...(𝑁𝐾)) ∪ (((𝑁𝐾) + 1)...𝑁)))
8956, 88, 38, 44fsumsplit 15552 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (1...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
9089oveq1d 7356 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
91 fzfid 13798 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (((𝑁𝐾) + 1)...𝑁) ∈ Fin)
92 nn0p1nn 12377 . . . . . . . . . . . . 13 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
9324, 92syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℕ)
94 elfzuz 13357 . . . . . . . . . . . 12 (𝑛 ∈ (((𝑁𝐾) + 1)...𝑁) → 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1)))
95 eluznn 12763 . . . . . . . . . . . 12 ((((𝑁𝐾) + 1) ∈ ℕ ∧ 𝑛 ∈ (ℤ‘((𝑁𝐾) + 1))) → 𝑛 ∈ ℕ)
9693, 94, 95syl2an 597 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℕ)
9796, 43syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑛) ∈ ℂ)
9891, 97fsumcl 15544 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ)
9950, 98pncan2d 11439 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛) + Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛))
10090, 99eqtr2d 2778 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) = (Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
101100fveq2d 6833 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = (exp‘(Σ𝑛 ∈ (1...𝑁)(log‘𝑛) − Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
10221nnne0d 12128 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) ≠ 0)
103 eflog 25837 . . . . . . . . 9 (((!‘𝑁) ∈ ℂ ∧ (!‘𝑁) ≠ 0) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
10422, 102, 103syl2anc 585 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (!‘𝑁))
105 logfac 25861 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
10620, 105syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘𝑁)) = Σ𝑛 ∈ (1...𝑁)(log‘𝑛))
107106fveq2d 6833 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘𝑁))) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
108104, 107eqtr3d 2779 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘𝑁) = (exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)))
109 eflog 25837 . . . . . . . . 9 (((!‘(𝑁𝐾)) ∈ ℂ ∧ (!‘(𝑁𝐾)) ≠ 0) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
11026, 27, 109syl2anc 585 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (!‘(𝑁𝐾)))
111 logfac 25861 . . . . . . . . . 10 ((𝑁𝐾) ∈ ℕ0 → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
11224, 111syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘(!‘(𝑁𝐾))) = Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))
113112fveq2d 6833 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(log‘(!‘(𝑁𝐾)))) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
114110, 113eqtr3d 2779 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (!‘(𝑁𝐾)) = (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛)))
115108, 114oveq12d 7359 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝑁) / (!‘(𝑁𝐾))) = ((exp‘Σ𝑛 ∈ (1...𝑁)(log‘𝑛)) / (exp‘Σ𝑛 ∈ (1...(𝑁𝐾))(log‘𝑛))))
11652, 101, 1153eqtr4d 2787 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) = ((!‘𝑁) / (!‘(𝑁𝐾))))
11732, 37, 1163eqtr4d 2787 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((!‘𝐾) · (𝑁C𝐾)) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
11819, 117eqtrd 2777 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑇) = (exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)))
119 birthday.s . . . . . . . 8 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
120 mapvalg 8700 . . . . . . . . 9 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
1214, 3, 120mp2an 690 . . . . . . . 8 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
122119, 121eqtr4i 2768 . . . . . . 7 𝑆 = ((1...𝑁) ↑m (1...𝐾))
123122fveq2i 6832 . . . . . 6 (♯‘𝑆) = (♯‘((1...𝑁) ↑m (1...𝐾)))
124 hashmap 14254 . . . . . . 7 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾))))
1254, 3, 124mp2an 690 . . . . . 6 (♯‘((1...𝑁) ↑m (1...𝐾))) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
126123, 125eqtri 2765 . . . . 5 (♯‘𝑆) = ((♯‘(1...𝑁))↑(♯‘(1...𝐾)))
12716, 11oveq12d 7359 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(1...𝑁))↑(♯‘(1...𝐾))) = (𝑁𝐾))
128126, 127eqtrid 2789 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (𝑁𝐾))
129 nncn 12086 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
130129adantr 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℂ)
131 nnne0 12112 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
132131adantr 482 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ≠ 0)
133 elfzelz 13361 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ)
134133adantl 483 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℤ)
135 explog 25854 . . . . 5 ((𝑁 ∈ ℂ ∧ 𝑁 ≠ 0 ∧ 𝐾 ∈ ℤ) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
136130, 132, 134, 135syl3anc 1371 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) = (exp‘(𝐾 · (log‘𝑁))))
137128, 136eqtrd 2777 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘𝑆) = (exp‘(𝐾 · (log‘𝑁))))
138118, 137oveq12d 7359 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
1399nn0cnd 12400 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ∈ ℂ)
140 nnrp 12846 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
141140adantr 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℝ+)
142141relogcld 25883 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℝ)
143142recnd 11108 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (log‘𝑁) ∈ ℂ)
144139, 143mulcld 11100 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 · (log‘𝑁)) ∈ ℂ)
145 efsub 15908 . . 3 ((Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) ∈ ℂ ∧ (𝐾 · (log‘𝑁)) ∈ ℂ) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
14698, 144, 145syl2anc 585 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = ((exp‘Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛)) / (exp‘(𝐾 · (log‘𝑁)))))
147 relogdiv 25853 . . . . . . 7 ((𝑛 ∈ ℝ+𝑁 ∈ ℝ+) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14841, 141, 147syl2anr 598 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ ℕ) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
14996, 148syldan 592 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) = ((log‘𝑛) − (log‘𝑁)))
150149sumeq2dv 15514 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)))
15165adantr 482 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 𝑁 ∈ ℤ)
15224nn0zd 12529 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℤ)
153152peano2zd 12534 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝐾) + 1) ∈ ℤ)
15496nnrpd 12875 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑛 ∈ ℝ+)
155141adantr 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → 𝑁 ∈ ℝ+)
156154, 155rpdivcld 12894 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (𝑛 / 𝑁) ∈ ℝ+)
157156relogcld 25883 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℝ)
158157recnd 11108 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘(𝑛 / 𝑁)) ∈ ℂ)
159 fvoveq1 7364 . . . . . 6 (𝑛 = (𝑁𝑘) → (log‘(𝑛 / 𝑁)) = (log‘((𝑁𝑘) / 𝑁)))
160151, 153, 151, 158, 159fsumrev 15590 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)))
161130subidd 11425 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝑁) = 0)
162 1cnd 11075 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℂ)
163130, 139, 162subsubd 11465 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝐾 − 1)) = ((𝑁𝐾) + 1))
164163oveq2d 7357 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝑁 − ((𝑁𝐾) + 1)))
165 ax-1cn 11034 . . . . . . . . . 10 1 ∈ ℂ
166 subcl 11325 . . . . . . . . . 10 ((𝐾 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐾 − 1) ∈ ℂ)
167139, 165, 166sylancl 587 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 − 1) ∈ ℂ)
168130, 167nncand 11442 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − (𝑁 − (𝐾 − 1))) = (𝐾 − 1))
169164, 168eqtr3d 2779 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁 − ((𝑁𝐾) + 1)) = (𝐾 − 1))
170161, 169oveq12d 7359 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1))) = (0...(𝐾 − 1)))
171130adantr 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
172 elfznn0 13454 . . . . . . . . . . 11 (𝑘 ∈ (0...(𝐾 − 1)) → 𝑘 ∈ ℕ0)
173172adantl 483 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℕ0)
174173nn0cnd 12400 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑘 ∈ ℂ)
175132adantr 482 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → 𝑁 ≠ 0)
176171, 174, 171, 175divsubdird 11895 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = ((𝑁 / 𝑁) − (𝑘 / 𝑁)))
177171, 175dividd 11854 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (𝑁 / 𝑁) = 1)
178177oveq1d 7356 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁 / 𝑁) − (𝑘 / 𝑁)) = (1 − (𝑘 / 𝑁)))
179176, 178eqtrd 2777 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → ((𝑁𝑘) / 𝑁) = (1 − (𝑘 / 𝑁)))
180179fveq2d 6833 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑘 ∈ (0...(𝐾 − 1))) → (log‘((𝑁𝑘) / 𝑁)) = (log‘(1 − (𝑘 / 𝑁))))
181170, 180sumeq12rdv 15518 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑘 ∈ ((𝑁𝑁)...(𝑁 − ((𝑁𝐾) + 1)))(log‘((𝑁𝑘) / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
182160, 181eqtrd 2777 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘(𝑛 / 𝑁)) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
183143adantr 482 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) ∧ 𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)) → (log‘𝑁) ∈ ℂ)
18491, 97, 183fsumsub 15599 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)))
185 fsumconst 15601 . . . . . . . 8 (((((𝑁𝐾) + 1)...𝑁) ∈ Fin ∧ (log‘𝑁) ∈ ℂ) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
18691, 143, 185syl2anc 585 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)))
187 1zzd 12456 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → 1 ∈ ℤ)
188 fzen 13378 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑁𝐾) ∈ ℤ) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
189187, 134, 152, 188syl3anc 1371 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))))
19024nn0cnd 12400 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝑁𝐾) ∈ ℂ)
191 addcom 11266 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (𝑁𝐾) ∈ ℂ) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
192165, 190, 191sylancr 588 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1 + (𝑁𝐾)) = ((𝑁𝐾) + 1))
193139, 130pncan3d 11440 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 + (𝑁𝐾)) = 𝑁)
194192, 193oveq12d 7359 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((1 + (𝑁𝐾))...(𝐾 + (𝑁𝐾))) = (((𝑁𝐾) + 1)...𝑁))
195189, 194breqtrd 5122 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁))
196 hasheni 14167 . . . . . . . . . 10 ((1...𝐾) ≈ (((𝑁𝐾) + 1)...𝑁) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
197195, 196syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(1...𝐾)) = (♯‘(((𝑁𝐾) + 1)...𝑁)))
198197, 11eqtr3d 2779 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (♯‘(((𝑁𝐾) + 1)...𝑁)) = 𝐾)
199198oveq1d 7356 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘(((𝑁𝐾) + 1)...𝑁)) · (log‘𝑁)) = (𝐾 · (log‘𝑁)))
200186, 199eqtrd 2777 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁) = (𝐾 · (log‘𝑁)))
201200oveq2d 7357 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
202184, 201eqtrd 2777 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)((log‘𝑛) − (log‘𝑁)) = (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))))
203150, 182, 2023eqtr3rd 2786 . . 3 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁))) = Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁))))
204203fveq2d 6833 . 2 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → (exp‘(Σ𝑛 ∈ (((𝑁𝐾) + 1)...𝑁)(log‘𝑛) − (𝐾 · (log‘𝑁)))) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
205138, 146, 2043eqtr2d 2783 1 ((𝑁 ∈ ℕ ∧ 𝐾 ∈ (0...𝑁)) → ((♯‘𝑇) / (♯‘𝑆)) = (exp‘Σ𝑘 ∈ (0...(𝐾 − 1))(log‘(1 − (𝑘 / 𝑁)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845   = wceq 1541  wcel 2106  {cab 2714  wne 2941  cun 3899  cin 3900  c0 4273   class class class wbr 5096  wf 6479  1-1wf1 6480  cfv 6483  (class class class)co 7341  m cmap 8690  cen 8805  Fincfn 8808  cc 10974  0cc0 10976  1c1 10977   + caddc 10979   · cmul 10981   < clt 11114  cle 11115  cmin 11310   / cdiv 11737  cn 12078  0cn0 12338  cz 12424  cuz 12687  +crp 12835  ...cfz 13344  cexp 13887  !cfa 14092  Ccbc 14121  chash 14149  Σcsu 15496  expce 15870  logclog 25815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5233  ax-sep 5247  ax-nul 5254  ax-pow 5312  ax-pr 5376  ax-un 7654  ax-inf2 9502  ax-cnex 11032  ax-resscn 11033  ax-1cn 11034  ax-icn 11035  ax-addcl 11036  ax-addrcl 11037  ax-mulcl 11038  ax-mulrcl 11039  ax-mulcom 11040  ax-addass 11041  ax-mulass 11042  ax-distr 11043  ax-i2m1 11044  ax-1ne0 11045  ax-1rid 11046  ax-rnegex 11047  ax-rrecex 11048  ax-cnre 11049  ax-pre-lttri 11050  ax-pre-lttrn 11051  ax-pre-ltadd 11052  ax-pre-mulgt0 11053  ax-pre-sup 11054  ax-addf 11055  ax-mulf 11056
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3731  df-csb 3847  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-pss 3920  df-nul 4274  df-if 4478  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4857  df-int 4899  df-iun 4947  df-iin 4948  df-br 5097  df-opab 5159  df-mpt 5180  df-tr 5214  df-id 5522  df-eprel 5528  df-po 5536  df-so 5537  df-fr 5579  df-se 5580  df-we 5581  df-xp 5630  df-rel 5631  df-cnv 5632  df-co 5633  df-dm 5634  df-rn 5635  df-res 5636  df-ima 5637  df-pred 6242  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6435  df-fun 6485  df-fn 6486  df-f 6487  df-f1 6488  df-fo 6489  df-f1o 6490  df-fv 6491  df-isom 6492  df-riota 7297  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7599  df-om 7785  df-1st 7903  df-2nd 7904  df-supp 8052  df-frecs 8171  df-wrecs 8202  df-recs 8276  df-rdg 8315  df-1o 8371  df-2o 8372  df-oadd 8375  df-er 8573  df-map 8692  df-pm 8693  df-ixp 8761  df-en 8809  df-dom 8810  df-sdom 8811  df-fin 8812  df-fsupp 9231  df-fi 9272  df-sup 9303  df-inf 9304  df-oi 9371  df-dju 9762  df-card 9800  df-pnf 11116  df-mnf 11117  df-xr 11118  df-ltxr 11119  df-le 11120  df-sub 11312  df-neg 11313  df-div 11738  df-nn 12079  df-2 12141  df-3 12142  df-4 12143  df-5 12144  df-6 12145  df-7 12146  df-8 12147  df-9 12148  df-n0 12339  df-xnn0 12411  df-z 12425  df-dec 12543  df-uz 12688  df-q 12794  df-rp 12836  df-xneg 12953  df-xadd 12954  df-xmul 12955  df-ioo 13188  df-ioc 13189  df-ico 13190  df-icc 13191  df-fz 13345  df-fzo 13488  df-fl 13617  df-mod 13695  df-seq 13827  df-exp 13888  df-fac 14093  df-bc 14122  df-hash 14150  df-shft 14877  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-limsup 15279  df-clim 15296  df-rlim 15297  df-sum 15497  df-ef 15876  df-sin 15878  df-cos 15879  df-pi 15881  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-ip 17077  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-hom 17083  df-cco 17084  df-rest 17230  df-topn 17231  df-0g 17249  df-gsum 17250  df-topgen 17251  df-pt 17252  df-prds 17255  df-xrs 17310  df-qtop 17315  df-imas 17316  df-xps 17318  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-submnd 18528  df-mulg 18797  df-cntz 19019  df-cmn 19483  df-psmet 20694  df-xmet 20695  df-met 20696  df-bl 20697  df-mopn 20698  df-fbas 20699  df-fg 20700  df-cnfld 20703  df-top 22148  df-topon 22165  df-topsp 22187  df-bases 22201  df-cld 22275  df-ntr 22276  df-cls 22277  df-nei 22354  df-lp 22392  df-perf 22393  df-cn 22483  df-cnp 22484  df-haus 22571  df-tx 22818  df-hmeo 23011  df-fil 23102  df-fm 23194  df-flim 23195  df-flf 23196  df-xms 23578  df-ms 23579  df-tms 23580  df-cncf 24146  df-limc 25135  df-dv 25136  df-log 25817
This theorem is referenced by:  birthdaylem3  26208
  Copyright terms: Public domain W3C validator