MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem1 Structured version   Visualization version   GIF version

Theorem birthdaylem1 26859
Description: Lemma for birthday 26862. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem1
StepHypRef Expression
1 f1f 6720 . . . 4 (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁))
21ss2abi 4019 . . 3 {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
3 birthday.t . . 3 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
4 birthday.s . . 3 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
52, 3, 43sstr4i 3987 . 2 𝑇𝑆
6 fzfi 13879 . . . . 5 (1...𝑁) ∈ Fin
7 fzfi 13879 . . . . 5 (1...𝐾) ∈ Fin
8 mapvalg 8763 . . . . 5 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
96, 7, 8mp2an 692 . . . 4 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
104, 9eqtr4i 2755 . . 3 𝑆 = ((1...𝑁) ↑m (1...𝐾))
11 mapfi 9238 . . . 4 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin)
126, 7, 11mp2an 692 . . 3 ((1...𝑁) ↑m (1...𝐾)) ∈ Fin
1310, 12eqeltri 2824 . 2 𝑆 ∈ Fin
14 elfz1end 13457 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
15 ne0i 4292 . . . 4 (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
1614, 15sylbi 217 . . 3 (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅)
1710eqeq1i 2734 . . . . 5 (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅)
18 ovex 7382 . . . . . . 7 (1...𝑁) ∈ V
19 ovex 7382 . . . . . . 7 (1...𝐾) ∈ V
2018, 19map0 8814 . . . . . 6 (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅))
2120simplbi 497 . . . . 5 (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅)
2217, 21sylbi 217 . . . 4 (𝑆 = ∅ → (1...𝑁) = ∅)
2322necon3i 2957 . . 3 ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅)
2416, 23syl 17 . 2 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
255, 13, 243pm3.2i 1340 1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wss 3903  c0 4284  wf 6478  1-1wf1 6479  (class class class)co 7349  m cmap 8753  Fincfn 8872  1c1 11010  cn 12128  ...cfz 13410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411
This theorem is referenced by:  birthdaylem3  26861  birthday  26862
  Copyright terms: Public domain W3C validator