MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem1 Structured version   Visualization version   GIF version

Theorem birthdaylem1 26918
Description: Lemma for birthday 26921. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem1
StepHypRef Expression
1 f1f 6779 . . . 4 (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁))
21ss2abi 4047 . . 3 {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
3 birthday.t . . 3 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
4 birthday.s . . 3 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
52, 3, 43sstr4i 4015 . 2 𝑇𝑆
6 fzfi 13995 . . . . 5 (1...𝑁) ∈ Fin
7 fzfi 13995 . . . . 5 (1...𝐾) ∈ Fin
8 mapvalg 8855 . . . . 5 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
96, 7, 8mp2an 692 . . . 4 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
104, 9eqtr4i 2762 . . 3 𝑆 = ((1...𝑁) ↑m (1...𝐾))
11 mapfi 9365 . . . 4 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin)
126, 7, 11mp2an 692 . . 3 ((1...𝑁) ↑m (1...𝐾)) ∈ Fin
1310, 12eqeltri 2831 . 2 𝑆 ∈ Fin
14 elfz1end 13576 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
15 ne0i 4321 . . . 4 (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
1614, 15sylbi 217 . . 3 (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅)
1710eqeq1i 2741 . . . . 5 (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅)
18 ovex 7443 . . . . . . 7 (1...𝑁) ∈ V
19 ovex 7443 . . . . . . 7 (1...𝐾) ∈ V
2018, 19map0 8906 . . . . . 6 (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅))
2120simplbi 497 . . . . 5 (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅)
2217, 21sylbi 217 . . . 4 (𝑆 = ∅ → (1...𝑁) = ∅)
2322necon3i 2965 . . 3 ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅)
2416, 23syl 17 . 2 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
255, 13, 243pm3.2i 1340 1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wss 3931  c0 4313  wf 6532  1-1wf1 6533  (class class class)co 7410  m cmap 8845  Fincfn 8964  1c1 11135  cn 12245  ...cfz 13529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530
This theorem is referenced by:  birthdaylem3  26920  birthday  26921
  Copyright terms: Public domain W3C validator