MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem1 Structured version   Visualization version   GIF version

Theorem birthdaylem1 25702
Description: Lemma for birthday 25705. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem1
StepHypRef Expression
1 f1f 6585 . . . 4 (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁))
21ss2abi 3966 . . 3 {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
3 birthday.t . . 3 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
4 birthday.s . . 3 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
52, 3, 43sstr4i 3930 . 2 𝑇𝑆
6 fzfi 13444 . . . . 5 (1...𝑁) ∈ Fin
7 fzfi 13444 . . . . 5 (1...𝐾) ∈ Fin
8 mapvalg 8460 . . . . 5 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
96, 7, 8mp2an 692 . . . 4 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
104, 9eqtr4i 2765 . . 3 𝑆 = ((1...𝑁) ↑m (1...𝐾))
11 mapfi 8906 . . . 4 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin)
126, 7, 11mp2an 692 . . 3 ((1...𝑁) ↑m (1...𝐾)) ∈ Fin
1310, 12eqeltri 2830 . 2 𝑆 ∈ Fin
14 elfz1end 13041 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
15 ne0i 4233 . . . 4 (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
1614, 15sylbi 220 . . 3 (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅)
1710eqeq1i 2744 . . . . 5 (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅)
18 ovex 7216 . . . . . . 7 (1...𝑁) ∈ V
19 ovex 7216 . . . . . . 7 (1...𝐾) ∈ V
2018, 19map0 8510 . . . . . 6 (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅))
2120simplbi 501 . . . . 5 (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅)
2217, 21sylbi 220 . . . 4 (𝑆 = ∅ → (1...𝑁) = ∅)
2322necon3i 2967 . . 3 ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅)
2416, 23syl 17 . 2 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
255, 13, 243pm3.2i 1340 1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  {cab 2717  wne 2935  wss 3853  c0 4221  wf 6346  1-1wf1 6347  (class class class)co 7183  m cmap 8450  Fincfn 8568  1c1 10629  cn 11729  ...cfz 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-er 8333  df-map 8452  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-nn 11730  df-n0 11990  df-z 12076  df-uz 12338  df-fz 12995
This theorem is referenced by:  birthdaylem3  25704  birthday  25705
  Copyright terms: Public domain W3C validator