| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > birthdaylem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for birthday 26864. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| birthday.s | ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| birthday.t | ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} |
| Ref | Expression |
|---|---|
| birthdaylem1 | ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6756 | . . . 4 ⊢ (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
| 2 | 1 | ss2abi 4030 | . . 3 ⊢ {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 3 | birthday.t | . . 3 ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} | |
| 4 | birthday.s | . . 3 ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} | |
| 5 | 2, 3, 4 | 3sstr4i 3998 | . 2 ⊢ 𝑇 ⊆ 𝑆 |
| 6 | fzfi 13937 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
| 7 | fzfi 13937 | . . . . 5 ⊢ (1...𝐾) ∈ Fin | |
| 8 | mapvalg 8809 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ ((1...𝑁) ↑m (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 10 | 4, 9 | eqtr4i 2755 | . . 3 ⊢ 𝑆 = ((1...𝑁) ↑m (1...𝐾)) |
| 11 | mapfi 9299 | . . . 4 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin) | |
| 12 | 6, 7, 11 | mp2an 692 | . . 3 ⊢ ((1...𝑁) ↑m (1...𝐾)) ∈ Fin |
| 13 | 10, 12 | eqeltri 2824 | . 2 ⊢ 𝑆 ∈ Fin |
| 14 | elfz1end 13515 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) | |
| 15 | ne0i 4304 | . . . 4 ⊢ (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅) | |
| 16 | 14, 15 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
| 17 | 10 | eqeq1i 2734 | . . . . 5 ⊢ (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅) |
| 18 | ovex 7420 | . . . . . . 7 ⊢ (1...𝑁) ∈ V | |
| 19 | ovex 7420 | . . . . . . 7 ⊢ (1...𝐾) ∈ V | |
| 20 | 18, 19 | map0 8860 | . . . . . 6 ⊢ (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅)) |
| 21 | 20 | simplbi 497 | . . . . 5 ⊢ (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅) |
| 22 | 17, 21 | sylbi 217 | . . . 4 ⊢ (𝑆 = ∅ → (1...𝑁) = ∅) |
| 23 | 22 | necon3i 2957 | . . 3 ⊢ ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅) |
| 24 | 16, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑆 ≠ ∅) |
| 25 | 5, 13, 24 | 3pm3.2i 1340 | 1 ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ⊆ wss 3914 ∅c0 4296 ⟶wf 6507 –1-1→wf1 6508 (class class class)co 7387 ↑m cmap 8799 Fincfn 8918 1c1 11069 ℕcn 12186 ...cfz 13468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 |
| This theorem is referenced by: birthdaylem3 26863 birthday 26864 |
| Copyright terms: Public domain | W3C validator |