| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > birthdaylem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for birthday 26898. (Contributed by Mario Carneiro, 17-Apr-2015.) |
| Ref | Expression |
|---|---|
| birthday.s | ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| birthday.t | ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} |
| Ref | Expression |
|---|---|
| birthdaylem1 | ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6738 | . . . 4 ⊢ (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁)) | |
| 2 | 1 | ss2abi 4027 | . . 3 ⊢ {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 3 | birthday.t | . . 3 ⊢ 𝑇 = {𝑓 ∣ 𝑓:(1...𝐾)–1-1→(1...𝑁)} | |
| 4 | birthday.s | . . 3 ⊢ 𝑆 = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} | |
| 5 | 2, 3, 4 | 3sstr4i 3995 | . 2 ⊢ 𝑇 ⊆ 𝑆 |
| 6 | fzfi 13915 | . . . . 5 ⊢ (1...𝑁) ∈ Fin | |
| 7 | fzfi 13915 | . . . . 5 ⊢ (1...𝐾) ∈ Fin | |
| 8 | mapvalg 8786 | . . . . 5 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)}) | |
| 9 | 6, 7, 8 | mp2an 692 | . . . 4 ⊢ ((1...𝑁) ↑m (1...𝐾)) = {𝑓 ∣ 𝑓:(1...𝐾)⟶(1...𝑁)} |
| 10 | 4, 9 | eqtr4i 2755 | . . 3 ⊢ 𝑆 = ((1...𝑁) ↑m (1...𝐾)) |
| 11 | mapfi 9275 | . . . 4 ⊢ (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin) | |
| 12 | 6, 7, 11 | mp2an 692 | . . 3 ⊢ ((1...𝑁) ↑m (1...𝐾)) ∈ Fin |
| 13 | 10, 12 | eqeltri 2824 | . 2 ⊢ 𝑆 ∈ Fin |
| 14 | elfz1end 13493 | . . . 4 ⊢ (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁)) | |
| 15 | ne0i 4300 | . . . 4 ⊢ (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅) | |
| 16 | 14, 15 | sylbi 217 | . . 3 ⊢ (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅) |
| 17 | 10 | eqeq1i 2734 | . . . . 5 ⊢ (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅) |
| 18 | ovex 7402 | . . . . . . 7 ⊢ (1...𝑁) ∈ V | |
| 19 | ovex 7402 | . . . . . . 7 ⊢ (1...𝐾) ∈ V | |
| 20 | 18, 19 | map0 8837 | . . . . . 6 ⊢ (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅)) |
| 21 | 20 | simplbi 497 | . . . . 5 ⊢ (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅) |
| 22 | 17, 21 | sylbi 217 | . . . 4 ⊢ (𝑆 = ∅ → (1...𝑁) = ∅) |
| 23 | 22 | necon3i 2957 | . . 3 ⊢ ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅) |
| 24 | 16, 23 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → 𝑆 ≠ ∅) |
| 25 | 5, 13, 24 | 3pm3.2i 1340 | 1 ⊢ (𝑇 ⊆ 𝑆 ∧ 𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ⊆ wss 3911 ∅c0 4292 ⟶wf 6495 –1-1→wf1 6496 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 1c1 11047 ℕcn 12164 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: birthdaylem3 26897 birthday 26898 |
| Copyright terms: Public domain | W3C validator |