MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  birthdaylem1 Structured version   Visualization version   GIF version

Theorem birthdaylem1 26895
Description: Lemma for birthday 26898. (Contributed by Mario Carneiro, 17-Apr-2015.)
Hypotheses
Ref Expression
birthday.s 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
birthday.t 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
Assertion
Ref Expression
birthdaylem1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Distinct variable groups:   𝑓,𝐾   𝑓,𝑁
Allowed substitution hints:   𝑆(𝑓)   𝑇(𝑓)

Proof of Theorem birthdaylem1
StepHypRef Expression
1 f1f 6738 . . . 4 (𝑓:(1...𝐾)–1-1→(1...𝑁) → 𝑓:(1...𝐾)⟶(1...𝑁))
21ss2abi 4027 . . 3 {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)} ⊆ {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
3 birthday.t . . 3 𝑇 = {𝑓𝑓:(1...𝐾)–1-1→(1...𝑁)}
4 birthday.s . . 3 𝑆 = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
52, 3, 43sstr4i 3995 . 2 𝑇𝑆
6 fzfi 13915 . . . . 5 (1...𝑁) ∈ Fin
7 fzfi 13915 . . . . 5 (1...𝐾) ∈ Fin
8 mapvalg 8786 . . . . 5 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)})
96, 7, 8mp2an 692 . . . 4 ((1...𝑁) ↑m (1...𝐾)) = {𝑓𝑓:(1...𝐾)⟶(1...𝑁)}
104, 9eqtr4i 2755 . . 3 𝑆 = ((1...𝑁) ↑m (1...𝐾))
11 mapfi 9275 . . . 4 (((1...𝑁) ∈ Fin ∧ (1...𝐾) ∈ Fin) → ((1...𝑁) ↑m (1...𝐾)) ∈ Fin)
126, 7, 11mp2an 692 . . 3 ((1...𝑁) ↑m (1...𝐾)) ∈ Fin
1310, 12eqeltri 2824 . 2 𝑆 ∈ Fin
14 elfz1end 13493 . . . 4 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
15 ne0i 4300 . . . 4 (𝑁 ∈ (1...𝑁) → (1...𝑁) ≠ ∅)
1614, 15sylbi 217 . . 3 (𝑁 ∈ ℕ → (1...𝑁) ≠ ∅)
1710eqeq1i 2734 . . . . 5 (𝑆 = ∅ ↔ ((1...𝑁) ↑m (1...𝐾)) = ∅)
18 ovex 7402 . . . . . . 7 (1...𝑁) ∈ V
19 ovex 7402 . . . . . . 7 (1...𝐾) ∈ V
2018, 19map0 8837 . . . . . 6 (((1...𝑁) ↑m (1...𝐾)) = ∅ ↔ ((1...𝑁) = ∅ ∧ (1...𝐾) ≠ ∅))
2120simplbi 497 . . . . 5 (((1...𝑁) ↑m (1...𝐾)) = ∅ → (1...𝑁) = ∅)
2217, 21sylbi 217 . . . 4 (𝑆 = ∅ → (1...𝑁) = ∅)
2322necon3i 2957 . . 3 ((1...𝑁) ≠ ∅ → 𝑆 ≠ ∅)
2416, 23syl 17 . 2 (𝑁 ∈ ℕ → 𝑆 ≠ ∅)
255, 13, 243pm3.2i 1340 1 (𝑇𝑆𝑆 ∈ Fin ∧ (𝑁 ∈ ℕ → 𝑆 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wss 3911  c0 4292  wf 6495  1-1wf1 6496  (class class class)co 7369  m cmap 8776  Fincfn 8895  1c1 11047  cn 12164  ...cfz 13446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-n0 12421  df-z 12508  df-uz 12772  df-fz 13447
This theorem is referenced by:  birthdaylem3  26897  birthday  26898
  Copyright terms: Public domain W3C validator