![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgbasfi | Structured version Visualization version GIF version |
Description: The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
symgbas.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgbas.2 | ⊢ 𝐵 = (Base‘𝐺) |
Ref | Expression |
---|---|
symgbasfi | ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfi 8530 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑𝑚 𝐴) ∈ Fin) | |
2 | 1 | anidms 564 | . 2 ⊢ (𝐴 ∈ Fin → (𝐴 ↑𝑚 𝐴) ∈ Fin) |
3 | symgbas.1 | . . . . 5 ⊢ 𝐺 = (SymGrp‘𝐴) | |
4 | symgbas.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 3, 4 | symgbas 18149 | . . . 4 ⊢ 𝐵 = {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} |
6 | f1of 6377 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→𝐴 → 𝑓:𝐴⟶𝐴) | |
7 | 6 | ss2abi 3898 | . . . 4 ⊢ {𝑓 ∣ 𝑓:𝐴–1-1-onto→𝐴} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
8 | 5, 7 | eqsstri 3859 | . . 3 ⊢ 𝐵 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐴} |
9 | mapvalg 8131 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ Fin) → (𝐴 ↑𝑚 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐴}) | |
10 | 9 | anidms 564 | . . 3 ⊢ (𝐴 ∈ Fin → (𝐴 ↑𝑚 𝐴) = {𝑓 ∣ 𝑓:𝐴⟶𝐴}) |
11 | 8, 10 | syl5sseqr 3878 | . 2 ⊢ (𝐴 ∈ Fin → 𝐵 ⊆ (𝐴 ↑𝑚 𝐴)) |
12 | ssfi 8448 | . 2 ⊢ (((𝐴 ↑𝑚 𝐴) ∈ Fin ∧ 𝐵 ⊆ (𝐴 ↑𝑚 𝐴)) → 𝐵 ∈ Fin) | |
13 | 2, 11, 12 | syl2anc 581 | 1 ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1658 ∈ wcel 2166 {cab 2810 ⊆ wss 3797 ⟶wf 6118 –1-1-onto→wf1o 6121 ‘cfv 6122 (class class class)co 6904 ↑𝑚 cmap 8121 Fincfn 8221 Basecbs 16221 SymGrpcsymg 18146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-int 4697 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-1st 7427 df-2nd 7428 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-1o 7825 df-2o 7826 df-oadd 7829 df-er 8008 df-map 8123 df-pm 8124 df-en 8222 df-dom 8223 df-sdom 8224 df-fin 8225 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-3 11414 df-4 11415 df-5 11416 df-6 11417 df-7 11418 df-8 11419 df-9 11420 df-n0 11618 df-z 11704 df-uz 11968 df-fz 12619 df-struct 16223 df-ndx 16224 df-slot 16225 df-base 16227 df-plusg 16317 df-tset 16323 df-symg 18147 |
This theorem is referenced by: mdetleib2 20761 mdetf 20768 mdetrlin 20775 mdetrsca 20776 mdetralt 20781 m2detleib 20804 smadiadetlem3 20842 smadiadet 20844 mdetpmtr1 30433 |
Copyright terms: Public domain | W3C validator |