MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmimalem Structured version   Visualization version   GIF version

Theorem mhmimalem 18751
Description: Lemma for mhmima 18752 and similar theorems, formerly part of proof for mhmima 18752. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.)
Hypotheses
Ref Expression
mhmimalem.f (𝜑𝐹 ∈ (𝑀 MndHom 𝑁))
mhmimalem.s (𝜑𝑋 ⊆ (Base‘𝑀))
mhmimalem.a (𝜑 = (+g𝑀))
mhmimalem.p (𝜑+ = (+g𝑁))
mhmimalem.c ((𝜑𝑧𝑋𝑥𝑋) → (𝑧 𝑥) ∈ 𝑋)
Assertion
Ref Expression
mhmimalem (𝜑 → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥 + 𝑦) ∈ (𝐹𝑋))
Distinct variable groups:   𝑥,𝐹,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧   𝑦, + ,𝑥,𝑧   𝜑,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑦)   (𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑁(𝑥,𝑦,𝑧)

Proof of Theorem mhmimalem
StepHypRef Expression
1 mhmimalem.f . . . . . . . . . 10 (𝜑𝐹 ∈ (𝑀 MndHom 𝑁))
21adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁))
3 mhmimalem.s . . . . . . . . . . 11 (𝜑𝑋 ⊆ (Base‘𝑀))
43adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝑋 ⊆ (Base‘𝑀))
5 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝑧𝑋)
64, 5sseldd 3947 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝑧 ∈ (Base‘𝑀))
7 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝑥𝑋)
84, 7sseldd 3947 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝑥 ∈ (Base‘𝑀))
9 eqid 2729 . . . . . . . . . 10 (Base‘𝑀) = (Base‘𝑀)
10 eqid 2729 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
11 eqid 2729 . . . . . . . . . 10 (+g𝑁) = (+g𝑁)
129, 10, 11mhmlin 18720 . . . . . . . . 9 ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
132, 6, 8, 12syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
14 mhmimalem.a . . . . . . . . . . . 12 (𝜑 = (+g𝑀))
1514oveqd 7404 . . . . . . . . . . 11 (𝜑 → (𝑧 𝑥) = (𝑧(+g𝑀)𝑥))
1615fveq2d 6862 . . . . . . . . . 10 (𝜑 → (𝐹‘(𝑧 𝑥)) = (𝐹‘(𝑧(+g𝑀)𝑥)))
17 mhmimalem.p . . . . . . . . . . 11 (𝜑+ = (+g𝑁))
1817oveqd 7404 . . . . . . . . . 10 (𝜑 → ((𝐹𝑧) + (𝐹𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥)))
1916, 18eqeq12d 2745 . . . . . . . . 9 (𝜑 → ((𝐹‘(𝑧 𝑥)) = ((𝐹𝑧) + (𝐹𝑥)) ↔ (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥))))
2019adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹‘(𝑧 𝑥)) = ((𝐹𝑧) + (𝐹𝑥)) ↔ (𝐹‘(𝑧(+g𝑀)𝑥)) = ((𝐹𝑧)(+g𝑁)(𝐹𝑥))))
2113, 20mpbird 257 . . . . . . 7 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧 𝑥)) = ((𝐹𝑧) + (𝐹𝑥)))
22 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑁) = (Base‘𝑁)
239, 22mhmf 18716 . . . . . . . . . . 11 (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
241, 23syl 17 . . . . . . . . . 10 (𝜑𝐹:(Base‘𝑀)⟶(Base‘𝑁))
2524ffnd 6689 . . . . . . . . 9 (𝜑𝐹 Fn (Base‘𝑀))
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → 𝐹 Fn (Base‘𝑀))
27 mhmimalem.c . . . . . . . . 9 ((𝜑𝑧𝑋𝑥𝑋) → (𝑧 𝑥) ∈ 𝑋)
28273expb 1120 . . . . . . . 8 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → (𝑧 𝑥) ∈ 𝑋)
29 fnfvima 7207 . . . . . . . 8 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧 𝑥) ∈ 𝑋) → (𝐹‘(𝑧 𝑥)) ∈ (𝐹𝑋))
3026, 4, 28, 29syl3anc 1373 . . . . . . 7 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → (𝐹‘(𝑧 𝑥)) ∈ (𝐹𝑋))
3121, 30eqeltrrd 2829 . . . . . 6 ((𝜑 ∧ (𝑧𝑋𝑥𝑋)) → ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋))
3231anassrs 467 . . . . 5 (((𝜑𝑧𝑋) ∧ 𝑥𝑋) → ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋))
3332ralrimiva 3125 . . . 4 ((𝜑𝑧𝑋) → ∀𝑥𝑋 ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋))
34 oveq2 7395 . . . . . . . 8 (𝑦 = (𝐹𝑥) → ((𝐹𝑧) + 𝑦) = ((𝐹𝑧) + (𝐹𝑥)))
3534eleq1d 2813 . . . . . . 7 (𝑦 = (𝐹𝑥) → (((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋)))
3635ralima 7211 . . . . . 6 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋)))
3725, 3, 36syl2anc 584 . . . . 5 (𝜑 → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋)))
3837adantr 480 . . . 4 ((𝜑𝑧𝑋) → (∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑥𝑋 ((𝐹𝑧) + (𝐹𝑥)) ∈ (𝐹𝑋)))
3933, 38mpbird 257 . . 3 ((𝜑𝑧𝑋) → ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋))
4039ralrimiva 3125 . 2 (𝜑 → ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋))
41 oveq1 7394 . . . . . 6 (𝑥 = (𝐹𝑧) → (𝑥 + 𝑦) = ((𝐹𝑧) + 𝑦))
4241eleq1d 2813 . . . . 5 (𝑥 = (𝐹𝑧) → ((𝑥 + 𝑦) ∈ (𝐹𝑋) ↔ ((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋)))
4342ralbidv 3156 . . . 4 (𝑥 = (𝐹𝑧) → (∀𝑦 ∈ (𝐹𝑋)(𝑥 + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋)))
4443ralima 7211 . . 3 ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥 + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋)))
4525, 3, 44syl2anc 584 . 2 (𝜑 → (∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥 + 𝑦) ∈ (𝐹𝑋) ↔ ∀𝑧𝑋𝑦 ∈ (𝐹𝑋)((𝐹𝑧) + 𝑦) ∈ (𝐹𝑋)))
4640, 45mpbird 257 1 (𝜑 → ∀𝑥 ∈ (𝐹𝑋)∀𝑦 ∈ (𝐹𝑋)(𝑥 + 𝑦) ∈ (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wss 3914  cima 5641   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220   MndHom cmhm 18708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-mhm 18710
This theorem is referenced by:  mhmima  18752  rhmimasubrng  20475
  Copyright terms: Public domain W3C validator