Step | Hyp | Ref
| Expression |
1 | | mhmimalem.f |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝑀 MndHom 𝑁)) |
2 | 1 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) |
3 | | mhmimalem.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑀)) |
4 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) |
5 | | simprl 769 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝑋) |
6 | 4, 5 | sseldd 3982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ (Base‘𝑀)) |
7 | | simprr 771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝑋) |
8 | 4, 7 | sseldd 3982 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) |
9 | | eqid 2732 |
. . . . . . . . . 10
⊢
(Base‘𝑀) =
(Base‘𝑀) |
10 | | eqid 2732 |
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) |
11 | | eqid 2732 |
. . . . . . . . . 10
⊢
(+g‘𝑁) = (+g‘𝑁) |
12 | 9, 10, 11 | mhmlin 18675 |
. . . . . . . . 9
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
13 | 2, 6, 8, 12 | syl3anc 1371 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
14 | | mhmimalem.a |
. . . . . . . . . . . 12
⊢ (𝜑 → ⊕ =
(+g‘𝑀)) |
15 | 14 | oveqd 7422 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ⊕ 𝑥) = (𝑧(+g‘𝑀)𝑥)) |
16 | 15 | fveq2d 6892 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝑧 ⊕ 𝑥)) = (𝐹‘(𝑧(+g‘𝑀)𝑥))) |
17 | | mhmimalem.p |
. . . . . . . . . . 11
⊢ (𝜑 → + =
(+g‘𝑁)) |
18 | 17 | oveqd 7422 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐹‘𝑧) + (𝐹‘𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) |
19 | 16, 18 | eqeq12d 2748 |
. . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥)) ↔ (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)))) |
20 | 19 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥)) ↔ (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)))) |
21 | 13, 20 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥))) |
22 | | eqid 2732 |
. . . . . . . . . . . 12
⊢
(Base‘𝑁) =
(Base‘𝑁) |
23 | 9, 22 | mhmf 18673 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
24 | 1, 23 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
25 | 24 | ffnd 6715 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn (Base‘𝑀)) |
26 | 25 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 Fn (Base‘𝑀)) |
27 | | mhmimalem.c |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧 ⊕ 𝑥) ∈ 𝑋) |
28 | 27 | 3expb 1120 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧 ⊕ 𝑥) ∈ 𝑋) |
29 | | fnfvima 7231 |
. . . . . . . 8
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧 ⊕ 𝑥) ∈ 𝑋) → (𝐹‘(𝑧 ⊕ 𝑥)) ∈ (𝐹 “ 𝑋)) |
30 | 26, 4, 28, 29 | syl3anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧 ⊕ 𝑥)) ∈ (𝐹 “ 𝑋)) |
31 | 21, 30 | eqeltrrd 2834 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
32 | 31 | anassrs 468 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
33 | 32 | ralrimiva 3146 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) |
34 | | oveq2 7413 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧) + 𝑦) = ((𝐹‘𝑧) + (𝐹‘𝑥))) |
35 | 34 | eleq1d 2818 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
36 | 35 | ralima 7236 |
. . . . . 6
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
37 | 25, 3, 36 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
38 | 37 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) |
39 | 33, 38 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋)) |
40 | 39 | ralrimiva 3146 |
. 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋)) |
41 | | oveq1 7412 |
. . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥 + 𝑦) = ((𝐹‘𝑧) + 𝑦)) |
42 | 41 | eleq1d 2818 |
. . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) |
43 | 42 | ralbidv 3177 |
. . . 4
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) |
44 | 43 | ralima 7236 |
. . 3
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) |
45 | 25, 3, 44 | syl2anc 584 |
. 2
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) |
46 | 40, 45 | mpbird 256 |
1
⊢ (𝜑 → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋)) |