Proof of Theorem mhmimalem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | mhmimalem.f | . . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ (𝑀 MndHom 𝑁)) | 
| 2 | 1 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | 
| 3 |  | mhmimalem.s | . . . . . . . . . . 11
⊢ (𝜑 → 𝑋 ⊆ (Base‘𝑀)) | 
| 4 | 3 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑋 ⊆ (Base‘𝑀)) | 
| 5 |  | simprl 771 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ 𝑋) | 
| 6 | 4, 5 | sseldd 3984 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑧 ∈ (Base‘𝑀)) | 
| 7 |  | simprr 773 | . . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝑋) | 
| 8 | 4, 7 | sseldd 3984 | . . . . . . . . 9
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ (Base‘𝑀)) | 
| 9 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝑀) =
(Base‘𝑀) | 
| 10 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) | 
| 11 |  | eqid 2737 | . . . . . . . . . 10
⊢
(+g‘𝑁) = (+g‘𝑁) | 
| 12 | 9, 10, 11 | mhmlin 18806 | . . . . . . . . 9
⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑧 ∈ (Base‘𝑀) ∧ 𝑥 ∈ (Base‘𝑀)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 13 | 2, 6, 8, 12 | syl3anc 1373 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 14 |  | mhmimalem.a | . . . . . . . . . . . 12
⊢ (𝜑 → ⊕ =
(+g‘𝑀)) | 
| 15 | 14 | oveqd 7448 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ⊕ 𝑥) = (𝑧(+g‘𝑀)𝑥)) | 
| 16 | 15 | fveq2d 6910 | . . . . . . . . . 10
⊢ (𝜑 → (𝐹‘(𝑧 ⊕ 𝑥)) = (𝐹‘(𝑧(+g‘𝑀)𝑥))) | 
| 17 |  | mhmimalem.p | . . . . . . . . . . 11
⊢ (𝜑 → + =
(+g‘𝑁)) | 
| 18 | 17 | oveqd 7448 | . . . . . . . . . 10
⊢ (𝜑 → ((𝐹‘𝑧) + (𝐹‘𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥))) | 
| 19 | 16, 18 | eqeq12d 2753 | . . . . . . . . 9
⊢ (𝜑 → ((𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥)) ↔ (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)))) | 
| 20 | 19 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥)) ↔ (𝐹‘(𝑧(+g‘𝑀)𝑥)) = ((𝐹‘𝑧)(+g‘𝑁)(𝐹‘𝑥)))) | 
| 21 | 13, 20 | mpbird 257 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧 ⊕ 𝑥)) = ((𝐹‘𝑧) + (𝐹‘𝑥))) | 
| 22 |  | eqid 2737 | . . . . . . . . . . . 12
⊢
(Base‘𝑁) =
(Base‘𝑁) | 
| 23 | 9, 22 | mhmf 18802 | . . . . . . . . . . 11
⊢ (𝐹 ∈ (𝑀 MndHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 24 | 1, 23 | syl 17 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) | 
| 25 | 24 | ffnd 6737 | . . . . . . . . 9
⊢ (𝜑 → 𝐹 Fn (Base‘𝑀)) | 
| 26 | 25 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → 𝐹 Fn (Base‘𝑀)) | 
| 27 |  | mhmimalem.c | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) → (𝑧 ⊕ 𝑥) ∈ 𝑋) | 
| 28 | 27 | 3expb 1121 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝑧 ⊕ 𝑥) ∈ 𝑋) | 
| 29 |  | fnfvima 7253 | . . . . . . . 8
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀) ∧ (𝑧 ⊕ 𝑥) ∈ 𝑋) → (𝐹‘(𝑧 ⊕ 𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 30 | 26, 4, 28, 29 | syl3anc 1373 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → (𝐹‘(𝑧 ⊕ 𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 31 | 21, 30 | eqeltrrd 2842 | . . . . . 6
⊢ ((𝜑 ∧ (𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋)) → ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 32 | 31 | anassrs 467 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 33 | 32 | ralrimiva 3146 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋)) | 
| 34 |  | oveq2 7439 | . . . . . . . 8
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑧) + 𝑦) = ((𝐹‘𝑧) + (𝐹‘𝑥))) | 
| 35 | 34 | eleq1d 2826 | . . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → (((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 36 | 35 | ralima 7257 | . . . . . 6
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 37 | 25, 3, 36 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 38 | 37 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑥 ∈ 𝑋 ((𝐹‘𝑧) + (𝐹‘𝑥)) ∈ (𝐹 “ 𝑋))) | 
| 39 | 33, 38 | mpbird 257 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋)) | 
| 40 | 39 | ralrimiva 3146 | . 2
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋)) | 
| 41 |  | oveq1 7438 | . . . . . 6
⊢ (𝑥 = (𝐹‘𝑧) → (𝑥 + 𝑦) = ((𝐹‘𝑧) + 𝑦)) | 
| 42 | 41 | eleq1d 2826 | . . . . 5
⊢ (𝑥 = (𝐹‘𝑧) → ((𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) | 
| 43 | 42 | ralbidv 3178 | . . . 4
⊢ (𝑥 = (𝐹‘𝑧) → (∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) | 
| 44 | 43 | ralima 7257 | . . 3
⊢ ((𝐹 Fn (Base‘𝑀) ∧ 𝑋 ⊆ (Base‘𝑀)) → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) | 
| 45 | 25, 3, 44 | syl2anc 584 | . 2
⊢ (𝜑 → (∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋) ↔ ∀𝑧 ∈ 𝑋 ∀𝑦 ∈ (𝐹 “ 𝑋)((𝐹‘𝑧) + 𝑦) ∈ (𝐹 “ 𝑋))) | 
| 46 | 40, 45 | mpbird 257 | 1
⊢ (𝜑 → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥 + 𝑦) ∈ (𝐹 “ 𝑋)) |