MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlin Structured version   Visualization version   GIF version

Theorem mhmlin 18352
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b 𝐵 = (Base‘𝑆)
mhmlin.p + = (+g𝑆)
mhmlin.q = (+g𝑇)
Assertion
Ref Expression
mhmlin ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6 𝐵 = (Base‘𝑆)
2 eqid 2738 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 mhmlin.p . . . . . 6 + = (+g𝑆)
4 mhmlin.q . . . . . 6 = (+g𝑇)
5 eqid 2738 . . . . . 6 (0g𝑆) = (0g𝑆)
6 eqid 2738 . . . . . 6 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18347 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 496 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp2d 1141 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
10 fvoveq1 7278 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
11 fveq2 6756 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1211oveq1d 7270 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
1310, 12eqeq12d 2754 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
14 oveq2 7263 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1514fveq2d 6760 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
16 fveq2 6756 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1716oveq2d 7271 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1815, 17eqeq12d 2754 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1913, 18rspc2v 3562 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
209, 19syl5com 31 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
21203impib 1114 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300   MndHom cmhm 18343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-mhm 18345
This theorem is referenced by:  mhmf1o  18355  resmhm  18374  resmhm2  18375  resmhm2b  18376  mhmco  18377  mhmima  18378  mhmeql  18379  pwsco2mhm  18386  gsumwmhm  18399  mhmmulg  18659  ghmmhmb  18760  cntzmhm  18860  gsumzmhm  19453  rhmmul  19886  evlslem1  21202  mpfind  21227  mhmvlin  21456  mdetunilem7  21675  dchrzrhmul  26299  dchrmulcl  26302  dchrn0  26303  dchrinvcl  26306  dchrsum2  26321  sum2dchr  26327  mhmhmeotmd  31779
  Copyright terms: Public domain W3C validator