| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmlin | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmlin.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmlin.p | ⊢ + = (+g‘𝑆) |
| mhmlin.q | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| mhmlin | ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | eqid 2735 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | mhmlin.p | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | mhmlin.q | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | eqid 2735 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2735 | . . . . . 6 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18763 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp2d 1143 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 10 | fvoveq1 7428 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) | |
| 11 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | 11 | oveq1d 7420 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦))) |
| 13 | 10, 12 | eqeq12d 2751 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)))) |
| 14 | oveq2 7413 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 15 | 14 | fveq2d 6880 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌))) |
| 16 | fveq2 6876 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 17 | 16 | oveq2d 7421 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| 18 | 15, 17 | eqeq12d 2751 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 19 | 13, 18 | rspc2v 3612 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 20 | 9, 19 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 21 | 20 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Mndcmnd 18712 MndHom cmhm 18759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-map 8842 df-mhm 18761 |
| This theorem is referenced by: mhmf1o 18774 mhmvlin 18779 resmhm 18798 resmhm2 18799 resmhm2b 18800 mhmco 18801 mhmimalem 18802 mhmeql 18804 pwsco2mhm 18811 gsumwmhm 18823 mhmmulg 19098 ghmmhmb 19210 cntzmhm 19324 gsumzmhm 19918 rhmmul 20446 rhmimasubrnglem 20525 evlslem1 22040 mpfind 22065 mdetunilem7 22556 dchrzrhmul 27209 dchrmulcl 27212 dchrn0 27213 dchrinvcl 27216 dchrsum2 27231 sum2dchr 27237 mhmimasplusg 33033 mhmhmeotmd 33958 |
| Copyright terms: Public domain | W3C validator |