| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmlin | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmlin.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmlin.p | ⊢ + = (+g‘𝑆) |
| mhmlin.q | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| mhmlin | ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | mhmlin.p | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | mhmlin.q | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18719 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp2d 1143 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 10 | fvoveq1 7413 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) | |
| 11 | fveq2 6861 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | 11 | oveq1d 7405 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦))) |
| 13 | 10, 12 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)))) |
| 14 | oveq2 7398 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 15 | 14 | fveq2d 6865 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌))) |
| 16 | fveq2 6861 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 17 | 16 | oveq2d 7406 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| 18 | 15, 17 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 19 | 13, 18 | rspc2v 3602 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 20 | 9, 19 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 21 | 20 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 MndHom cmhm 18715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-mhm 18717 |
| This theorem is referenced by: mhmf1o 18730 mhmvlin 18735 resmhm 18754 resmhm2 18755 resmhm2b 18756 mhmco 18757 mhmimalem 18758 mhmeql 18760 pwsco2mhm 18767 gsumwmhm 18779 mhmmulg 19054 ghmmhmb 19166 cntzmhm 19280 gsumzmhm 19874 rhmmul 20402 rhmimasubrnglem 20481 evlslem1 21996 mpfind 22021 mdetunilem7 22512 dchrzrhmul 27164 dchrmulcl 27167 dchrn0 27168 dchrinvcl 27171 dchrsum2 27186 sum2dchr 27192 mhmimasplusg 32986 fxpsubm 33136 mhmhmeotmd 33924 |
| Copyright terms: Public domain | W3C validator |