MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlin Structured version   Visualization version   GIF version

Theorem mhmlin 18685
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b 𝐵 = (Base‘𝑆)
mhmlin.p + = (+g𝑆)
mhmlin.q = (+g𝑇)
Assertion
Ref Expression
mhmlin ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6 𝐵 = (Base‘𝑆)
2 eqid 2729 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 mhmlin.p . . . . . 6 + = (+g𝑆)
4 mhmlin.q . . . . . 6 = (+g𝑇)
5 eqid 2729 . . . . . 6 (0g𝑆) = (0g𝑆)
6 eqid 2729 . . . . . 6 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18677 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 496 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp2d 1143 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
10 fvoveq1 7376 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
11 fveq2 6826 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1211oveq1d 7368 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
1310, 12eqeq12d 2745 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
14 oveq2 7361 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1514fveq2d 6830 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
16 fveq2 6826 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1716oveq2d 7369 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1815, 17eqeq12d 2745 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1913, 18rspc2v 3590 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
209, 19syl5com 31 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
21203impib 1116 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wf 6482  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  Mndcmnd 18626   MndHom cmhm 18673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-mhm 18675
This theorem is referenced by:  mhmf1o  18688  mhmvlin  18693  resmhm  18712  resmhm2  18713  resmhm2b  18714  mhmco  18715  mhmimalem  18716  mhmeql  18718  pwsco2mhm  18725  gsumwmhm  18737  mhmmulg  19012  ghmmhmb  19124  cntzmhm  19238  gsumzmhm  19834  rhmmul  20389  rhmimasubrnglem  20468  evlslem1  22005  mpfind  22030  mdetunilem7  22521  dchrzrhmul  27173  dchrmulcl  27176  dchrn0  27177  dchrinvcl  27180  dchrsum2  27195  sum2dchr  27201  mhmimasplusg  33005  fxpsubm  33127  mhmhmeotmd  33893
  Copyright terms: Public domain W3C validator