| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mhmlin | Structured version Visualization version GIF version | ||
| Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| Ref | Expression |
|---|---|
| mhmlin.b | ⊢ 𝐵 = (Base‘𝑆) |
| mhmlin.p | ⊢ + = (+g‘𝑆) |
| mhmlin.q | ⊢ ⨣ = (+g‘𝑇) |
| Ref | Expression |
|---|---|
| mhmlin | ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mhmlin.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | mhmlin.p | . . . . . 6 ⊢ + = (+g‘𝑆) | |
| 4 | mhmlin.q | . . . . . 6 ⊢ ⨣ = (+g‘𝑇) | |
| 5 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | eqid 2730 | . . . . . 6 ⊢ (0g‘𝑇) = (0g‘𝑇) | |
| 7 | 1, 2, 3, 4, 5, 6 | ismhm 18685 | . . . . 5 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇)))) |
| 8 | 7 | simprbi 496 | . . . 4 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ∧ (𝐹‘(0g‘𝑆)) = (0g‘𝑇))) |
| 9 | 8 | simp2d 1143 | . . 3 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 10 | fvoveq1 7364 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦))) | |
| 11 | fveq2 6817 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝐹‘𝑥) = (𝐹‘𝑋)) | |
| 12 | 11 | oveq1d 7356 | . . . . 5 ⊢ (𝑥 = 𝑋 → ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦))) |
| 13 | 10, 12 | eqeq12d 2746 | . . . 4 ⊢ (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)))) |
| 14 | oveq2 7349 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌)) | |
| 15 | 14 | fveq2d 6821 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌))) |
| 16 | fveq2 6817 | . . . . . 6 ⊢ (𝑦 = 𝑌 → (𝐹‘𝑦) = (𝐹‘𝑌)) | |
| 17 | 16 | oveq2d 7357 | . . . . 5 ⊢ (𝑦 = 𝑌 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| 18 | 15, 17 | eqeq12d 2746 | . . . 4 ⊢ (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 19 | 13, 18 | rspc2v 3586 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 20 | 9, 19 | syl5com 31 | . 2 ⊢ (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)))) |
| 21 | 20 | 3impib 1116 | 1 ⊢ ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹‘𝑋) ⨣ (𝐹‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∀wral 3045 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 0gc0g 17335 Mndcmnd 18634 MndHom cmhm 18681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-map 8747 df-mhm 18683 |
| This theorem is referenced by: mhmf1o 18696 mhmvlin 18701 resmhm 18720 resmhm2 18721 resmhm2b 18722 mhmco 18723 mhmimalem 18724 mhmeql 18726 pwsco2mhm 18733 gsumwmhm 18745 mhmmulg 19020 ghmmhmb 19132 cntzmhm 19246 gsumzmhm 19842 rhmmul 20396 rhmimasubrnglem 20473 evlslem1 22010 mpfind 22035 mdetunilem7 22526 dchrzrhmul 27177 dchrmulcl 27180 dchrn0 27181 dchrinvcl 27184 dchrsum2 27199 sum2dchr 27205 mhmimasplusg 33009 fxpsubm 33131 mplvrpmrhm 33567 mhmhmeotmd 33930 |
| Copyright terms: Public domain | W3C validator |