MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mhmlin Structured version   Visualization version   GIF version

Theorem mhmlin 18778
Description: A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
mhmlin.b 𝐵 = (Base‘𝑆)
mhmlin.p + = (+g𝑆)
mhmlin.q = (+g𝑇)
Assertion
Ref Expression
mhmlin ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))

Proof of Theorem mhmlin
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmlin.b . . . . . 6 𝐵 = (Base‘𝑆)
2 eqid 2726 . . . . . 6 (Base‘𝑇) = (Base‘𝑇)
3 mhmlin.p . . . . . 6 + = (+g𝑆)
4 mhmlin.q . . . . . 6 = (+g𝑇)
5 eqid 2726 . . . . . 6 (0g𝑆) = (0g𝑆)
6 eqid 2726 . . . . . 6 (0g𝑇) = (0g𝑇)
71, 2, 3, 4, 5, 6ismhm 18770 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇))))
87simprbi 495 . . . 4 (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹:𝐵⟶(Base‘𝑇) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹‘(0g𝑆)) = (0g𝑇)))
98simp2d 1140 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
10 fvoveq1 7439 . . . . 5 (𝑥 = 𝑋 → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘(𝑋 + 𝑦)))
11 fveq2 6893 . . . . . 6 (𝑥 = 𝑋 → (𝐹𝑥) = (𝐹𝑋))
1211oveq1d 7431 . . . . 5 (𝑥 = 𝑋 → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑦)))
1310, 12eqeq12d 2742 . . . 4 (𝑥 = 𝑋 → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦))))
14 oveq2 7424 . . . . . 6 (𝑦 = 𝑌 → (𝑋 + 𝑦) = (𝑋 + 𝑌))
1514fveq2d 6897 . . . . 5 (𝑦 = 𝑌 → (𝐹‘(𝑋 + 𝑦)) = (𝐹‘(𝑋 + 𝑌)))
16 fveq2 6893 . . . . . 6 (𝑦 = 𝑌 → (𝐹𝑦) = (𝐹𝑌))
1716oveq2d 7432 . . . . 5 (𝑦 = 𝑌 → ((𝐹𝑋) (𝐹𝑦)) = ((𝐹𝑋) (𝐹𝑌)))
1815, 17eqeq12d 2742 . . . 4 (𝑦 = 𝑌 → ((𝐹‘(𝑋 + 𝑦)) = ((𝐹𝑋) (𝐹𝑦)) ↔ (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
1913, 18rspc2v 3618 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
209, 19syl5com 31 . 2 (𝐹 ∈ (𝑆 MndHom 𝑇) → ((𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌))))
21203impib 1113 1 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  wf 6542  cfv 6546  (class class class)co 7416  Basecbs 17208  +gcplusg 17261  0gc0g 17449  Mndcmnd 18722   MndHom cmhm 18766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-br 5146  df-opab 5208  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-map 8849  df-mhm 18768
This theorem is referenced by:  mhmf1o  18781  mhmvlin  18786  resmhm  18805  resmhm2  18806  resmhm2b  18807  mhmco  18808  mhmimalem  18809  mhmeql  18811  pwsco2mhm  18818  gsumwmhm  18830  mhmmulg  19105  ghmmhmb  19217  cntzmhm  19331  gsumzmhm  19931  rhmmul  20464  rhmimasubrnglem  20543  evlslem1  22093  mpfind  22118  mdetunilem7  22608  dchrzrhmul  27272  dchrmulcl  27275  dchrn0  27276  dchrinvcl  27279  dchrsum2  27294  sum2dchr  27300  mhmimasplusg  32914  mhmhmeotmd  33755
  Copyright terms: Public domain W3C validator