Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirf | Structured version Visualization version GIF version |
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
Ref | Expression |
---|---|
mirf | ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7232 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V) |
3 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
4 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
5 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
6 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
7 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
10 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 4, 5, 6, 7, 8, 9, 10 | mirval 27014 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
12 | 3, 11 | eqtrid 2792 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
13 | 9 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
14 | 10 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
15 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) | |
16 | 4, 5, 6, 7, 8, 13, 14, 3, 15 | mirfv 27015 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))) |
17 | 4, 5, 6, 13, 15, 14 | mirreu3 27013 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) |
18 | riotacl 7246 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) |
20 | 16, 19 | eqeltrd 2841 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) ∈ 𝑃) |
21 | 2, 12, 20 | fmpt2d 6994 | 1 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ∃!wreu 3068 Vcvv 3431 ↦ cmpt 5162 ⟶wf 6428 ‘cfv 6432 ℩crio 7227 (class class class)co 7271 Basecbs 16910 distcds 16969 TarskiGcstrkg 26786 Itvcitv 26792 LineGclng 26793 pInvGcmir 27011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-trkgc 26807 df-trkgb 26808 df-trkgcb 26809 df-trkg 26812 df-mir 27012 |
This theorem is referenced by: mircl 27020 mirf1o 27028 mirbtwni 27030 mirbtwnb 27031 mirauto 27043 miduniq2 27046 krippenlem 27049 |
Copyright terms: Public domain | W3C validator |