MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf Structured version   Visualization version   GIF version

Theorem mirf 28636
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf (𝜑𝑀:𝑃𝑃)

Proof of Theorem mirf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7307 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V
21a1i 11 . 2 ((𝜑𝑦𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V)
3 mirfv.m . . 3 𝑀 = (𝑆𝐴)
4 mirval.p . . . 4 𝑃 = (Base‘𝐺)
5 mirval.d . . . 4 = (dist‘𝐺)
6 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
7 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
8 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 mirval.a . . . 4 (𝜑𝐴𝑃)
114, 5, 6, 7, 8, 9, 10mirval 28631 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
123, 11eqtrid 2778 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
139adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐺 ∈ TarskiG)
1410adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐴𝑃)
15 simpr 484 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝑃)
164, 5, 6, 7, 8, 13, 14, 3, 15mirfv 28632 . . 3 ((𝜑𝑥𝑃) → (𝑀𝑥) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))))
174, 5, 6, 13, 15, 14mirreu3 28630 . . . 4 ((𝜑𝑥𝑃) → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))
18 riotacl 7320 . . . 4 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
1917, 18syl 17 . . 3 ((𝜑𝑥𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
2016, 19eqeltrd 2831 . 2 ((𝜑𝑥𝑃) → (𝑀𝑥) ∈ 𝑃)
212, 12, 20fmpt2d 7057 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  ∃!wreu 3344  Vcvv 3436  cmpt 5172  wf 6477  cfv 6481  crio 7302  (class class class)co 7346  Basecbs 17117  distcds 17167  TarskiGcstrkg 28403  Itvcitv 28409  LineGclng 28410  pInvGcmir 28628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-trkgc 28424  df-trkgb 28425  df-trkgcb 28426  df-trkg 28429  df-mir 28629
This theorem is referenced by:  mircl  28637  mirf1o  28645  mirbtwni  28647  mirbtwnb  28648  mirauto  28660  miduniq2  28663  krippenlem  28666
  Copyright terms: Public domain W3C validator