MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf Structured version   Visualization version   GIF version

Theorem mirf 26454
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf (𝜑𝑀:𝑃𝑃)

Proof of Theorem mirf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7097 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V
21a1i 11 . 2 ((𝜑𝑦𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V)
3 mirfv.m . . 3 𝑀 = (𝑆𝐴)
4 mirval.p . . . 4 𝑃 = (Base‘𝐺)
5 mirval.d . . . 4 = (dist‘𝐺)
6 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
7 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
8 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 mirval.a . . . 4 (𝜑𝐴𝑃)
114, 5, 6, 7, 8, 9, 10mirval 26449 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
123, 11syl5eq 2845 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
139adantr 484 . . . 4 ((𝜑𝑥𝑃) → 𝐺 ∈ TarskiG)
1410adantr 484 . . . 4 ((𝜑𝑥𝑃) → 𝐴𝑃)
15 simpr 488 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝑃)
164, 5, 6, 7, 8, 13, 14, 3, 15mirfv 26450 . . 3 ((𝜑𝑥𝑃) → (𝑀𝑥) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))))
174, 5, 6, 13, 15, 14mirreu3 26448 . . . 4 ((𝜑𝑥𝑃) → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))
18 riotacl 7110 . . . 4 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
1917, 18syl 17 . . 3 ((𝜑𝑥𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
2016, 19eqeltrd 2890 . 2 ((𝜑𝑥𝑃) → (𝑀𝑥) ∈ 𝑃)
212, 12, 20fmpt2d 6864 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  ∃!wreu 3108  Vcvv 3441  cmpt 5110  wf 6320  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-mir 26447
This theorem is referenced by:  mircl  26455  mirf1o  26463  mirbtwni  26465  mirbtwnb  26466  mirauto  26478  miduniq2  26481  krippenlem  26484
  Copyright terms: Public domain W3C validator