![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirf | Structured version Visualization version GIF version |
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
Ref | Expression |
---|---|
mirf | ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaex 7374 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V) |
3 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
4 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
5 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
6 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
7 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
9 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
10 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | 4, 5, 6, 7, 8, 9, 10 | mirval 28452 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
12 | 3, 11 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
13 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
14 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) | |
16 | 4, 5, 6, 7, 8, 13, 14, 3, 15 | mirfv 28453 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))) |
17 | 4, 5, 6, 13, 15, 14 | mirreu3 28451 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) |
18 | riotacl 7388 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) |
20 | 16, 19 | eqeltrd 2829 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) ∈ 𝑃) |
21 | 2, 12, 20 | fmpt2d 7128 | 1 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃!wreu 3370 Vcvv 3470 ↦ cmpt 5225 ⟶wf 6538 ‘cfv 6542 ℩crio 7369 (class class class)co 7414 Basecbs 17173 distcds 17235 TarskiGcstrkg 28224 Itvcitv 28230 LineGclng 28231 pInvGcmir 28449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-trkgc 28245 df-trkgb 28246 df-trkgcb 28247 df-trkg 28250 df-mir 28450 |
This theorem is referenced by: mircl 28458 mirf1o 28466 mirbtwni 28468 mirbtwnb 28469 mirauto 28481 miduniq2 28484 krippenlem 28487 |
Copyright terms: Public domain | W3C validator |