MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf Structured version   Visualization version   GIF version

Theorem mirf 28587
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf (𝜑𝑀:𝑃𝑃)

Proof of Theorem mirf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7348 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V
21a1i 11 . 2 ((𝜑𝑦𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V)
3 mirfv.m . . 3 𝑀 = (𝑆𝐴)
4 mirval.p . . . 4 𝑃 = (Base‘𝐺)
5 mirval.d . . . 4 = (dist‘𝐺)
6 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
7 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
8 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 mirval.a . . . 4 (𝜑𝐴𝑃)
114, 5, 6, 7, 8, 9, 10mirval 28582 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
123, 11eqtrid 2776 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
139adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐺 ∈ TarskiG)
1410adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐴𝑃)
15 simpr 484 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝑃)
164, 5, 6, 7, 8, 13, 14, 3, 15mirfv 28583 . . 3 ((𝜑𝑥𝑃) → (𝑀𝑥) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))))
174, 5, 6, 13, 15, 14mirreu3 28581 . . . 4 ((𝜑𝑥𝑃) → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))
18 riotacl 7361 . . . 4 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
1917, 18syl 17 . . 3 ((𝜑𝑥𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
2016, 19eqeltrd 2828 . 2 ((𝜑𝑥𝑃) → (𝑀𝑥) ∈ 𝑃)
212, 12, 20fmpt2d 7096 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3352  Vcvv 3447  cmpt 5188  wf 6507  cfv 6511  crio 7343  (class class class)co 7387  Basecbs 17179  distcds 17229  TarskiGcstrkg 28354  Itvcitv 28360  LineGclng 28361  pInvGcmir 28579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-trkgc 28375  df-trkgb 28376  df-trkgcb 28377  df-trkg 28380  df-mir 28580
This theorem is referenced by:  mircl  28588  mirf1o  28596  mirbtwni  28598  mirbtwnb  28599  mirauto  28611  miduniq2  28614  krippenlem  28617
  Copyright terms: Public domain W3C validator