| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirf | Structured version Visualization version GIF version | ||
| Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| Ref | Expression |
|---|---|
| mirf | ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7371 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V) |
| 3 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 4 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 5 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 6 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 7 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 9 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | mirval 28639 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 12 | 3, 11 | eqtrid 2783 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 13 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
| 14 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 3, 15 | mirfv 28640 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))) |
| 17 | 4, 5, 6, 13, 15, 14 | mirreu3 28638 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) |
| 18 | riotacl 7384 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) |
| 20 | 16, 19 | eqeltrd 2835 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) ∈ 𝑃) |
| 21 | 2, 12, 20 | fmpt2d 7119 | 1 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3362 Vcvv 3464 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 Basecbs 17233 distcds 17285 TarskiGcstrkg 28411 Itvcitv 28417 LineGclng 28418 pInvGcmir 28636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-trkgc 28432 df-trkgb 28433 df-trkgcb 28434 df-trkg 28437 df-mir 28637 |
| This theorem is referenced by: mircl 28645 mirf1o 28653 mirbtwni 28655 mirbtwnb 28656 mirauto 28668 miduniq2 28671 krippenlem 28674 |
| Copyright terms: Public domain | W3C validator |