MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf Structured version   Visualization version   GIF version

Theorem mirf 28623
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf (𝜑𝑀:𝑃𝑃)

Proof of Theorem mirf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7314 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V
21a1i 11 . 2 ((𝜑𝑦𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V)
3 mirfv.m . . 3 𝑀 = (𝑆𝐴)
4 mirval.p . . . 4 𝑃 = (Base‘𝐺)
5 mirval.d . . . 4 = (dist‘𝐺)
6 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
7 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
8 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 mirval.a . . . 4 (𝜑𝐴𝑃)
114, 5, 6, 7, 8, 9, 10mirval 28618 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
123, 11eqtrid 2776 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
139adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐺 ∈ TarskiG)
1410adantr 480 . . . 4 ((𝜑𝑥𝑃) → 𝐴𝑃)
15 simpr 484 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝑃)
164, 5, 6, 7, 8, 13, 14, 3, 15mirfv 28619 . . 3 ((𝜑𝑥𝑃) → (𝑀𝑥) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))))
174, 5, 6, 13, 15, 14mirreu3 28617 . . . 4 ((𝜑𝑥𝑃) → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))
18 riotacl 7327 . . . 4 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
1917, 18syl 17 . . 3 ((𝜑𝑥𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
2016, 19eqeltrd 2828 . 2 ((𝜑𝑥𝑃) → (𝑀𝑥) ∈ 𝑃)
212, 12, 20fmpt2d 7062 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3343  Vcvv 3438  cmpt 5176  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  Basecbs 17138  distcds 17188  TarskiGcstrkg 28390  Itvcitv 28396  LineGclng 28397  pInvGcmir 28615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-trkgc 28411  df-trkgb 28412  df-trkgcb 28413  df-trkg 28416  df-mir 28616
This theorem is referenced by:  mircl  28624  mirf1o  28632  mirbtwni  28634  mirbtwnb  28635  mirauto  28647  miduniq2  28650  krippenlem  28653
  Copyright terms: Public domain W3C validator