| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirf | Structured version Visualization version GIF version | ||
| Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| Ref | Expression |
|---|---|
| mirf | ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaex 7314 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V) |
| 3 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 4 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 5 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 6 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 7 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 8 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 9 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 10 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 11 | 4, 5, 6, 7, 8, 9, 10 | mirval 28618 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 12 | 3, 11 | eqtrid 2776 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 13 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
| 14 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → 𝑥 ∈ 𝑃) | |
| 16 | 4, 5, 6, 7, 8, 13, 14, 3, 15 | mirfv 28619 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))) |
| 17 | 4, 5, 6, 13, 15, 14 | mirreu3 28617 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → ∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) |
| 18 | riotacl 7327 | . . . 4 ⊢ (∃!𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃) |
| 20 | 16, 19 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑃) → (𝑀‘𝑥) ∈ 𝑃) |
| 21 | 2, 12, 20 | fmpt2d 7062 | 1 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3343 Vcvv 3438 ↦ cmpt 5176 ⟶wf 6482 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-mir 28616 |
| This theorem is referenced by: mircl 28624 mirf1o 28632 mirbtwni 28634 mirbtwnb 28635 mirauto 28647 miduniq2 28650 krippenlem 28653 |
| Copyright terms: Public domain | W3C validator |