MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf Structured version   Visualization version   GIF version

Theorem mirf 27021
Description: Point inversion as function. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf (𝜑𝑀:𝑃𝑃)

Proof of Theorem mirf
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 riotaex 7236 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V
21a1i 11 . 2 ((𝜑𝑦𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) ∈ V)
3 mirfv.m . . 3 𝑀 = (𝑆𝐴)
4 mirval.p . . . 4 𝑃 = (Base‘𝐺)
5 mirval.d . . . 4 = (dist‘𝐺)
6 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
7 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
8 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
9 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
10 mirval.a . . . 4 (𝜑𝐴𝑃)
114, 5, 6, 7, 8, 9, 10mirval 27016 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
123, 11eqtrid 2790 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
139adantr 481 . . . 4 ((𝜑𝑥𝑃) → 𝐺 ∈ TarskiG)
1410adantr 481 . . . 4 ((𝜑𝑥𝑃) → 𝐴𝑃)
15 simpr 485 . . . 4 ((𝜑𝑥𝑃) → 𝑥𝑃)
164, 5, 6, 7, 8, 13, 14, 3, 15mirfv 27017 . . 3 ((𝜑𝑥𝑃) → (𝑀𝑥) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))))
174, 5, 6, 13, 15, 14mirreu3 27015 . . . 4 ((𝜑𝑥𝑃) → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)))
18 riotacl 7250 . . . 4 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
1917, 18syl 17 . . 3 ((𝜑𝑥𝑃) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑥) ∧ 𝐴 ∈ (𝑧𝐼𝑥))) ∈ 𝑃)
2016, 19eqeltrd 2839 . 2 ((𝜑𝑥𝑃) → (𝑀𝑥) ∈ 𝑃)
212, 12, 20fmpt2d 6997 1 (𝜑𝑀:𝑃𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  ∃!wreu 3066  Vcvv 3432  cmpt 5157  wf 6429  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  distcds 16971  TarskiGcstrkg 26788  Itvcitv 26794  LineGclng 26795  pInvGcmir 27013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-trkgc 26809  df-trkgb 26810  df-trkgcb 26811  df-trkg 26814  df-mir 27014
This theorem is referenced by:  mircl  27022  mirf1o  27030  mirbtwni  27032  mirbtwnb  27033  mirauto  27045  miduniq2  27048  krippenlem  27051
  Copyright terms: Public domain W3C validator