| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version | ||
| Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirfv | ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 2 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | mirval 28589 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 10 | 1, 9 | eqtrid 2777 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 11 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → 𝑦 = 𝐵) | |
| 12 | 11 | oveq2d 7406 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 − 𝑦) = (𝐴 − 𝐵)) |
| 13 | 12 | eqeq2d 2741 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → ((𝐴 − 𝑧) = (𝐴 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝐵))) |
| 14 | 11 | oveq2d 7406 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵)) |
| 15 | 14 | eleq2d 2815 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 16 | 13, 15 | anbi12d 632 | . . 3 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 17 | 16 | riotabidva 7366 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 18 | mirfv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 19 | riotaex 7351 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V | |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V) |
| 21 | 10, 17, 18, 20 | fvmptd 6978 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ↦ cmpt 5191 ‘cfv 6514 ℩crio 7346 (class class class)co 7390 Basecbs 17186 distcds 17236 TarskiGcstrkg 28361 Itvcitv 28367 LineGclng 28368 pInvGcmir 28586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-mir 28587 |
| This theorem is referenced by: mircgr 28591 mirbtwn 28592 ismir 28593 mirf 28594 mireq 28599 |
| Copyright terms: Public domain | W3C validator |