MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirfv Structured version   Visualization version   GIF version

Theorem mirfv 28640
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirfv (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐺   𝑧,𝑀   𝑧,𝐼   𝑧,𝑃   𝜑,𝑧   𝑧,
Allowed substitution hints:   𝑆(𝑧)   𝐿(𝑧)

Proof of Theorem mirfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mirfv.m . . 3 𝑀 = (𝑆𝐴)
2 mirval.p . . . 4 𝑃 = (Base‘𝐺)
3 mirval.d . . . 4 = (dist‘𝐺)
4 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
5 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
6 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . . 4 (𝜑𝐴𝑃)
92, 3, 4, 5, 6, 7, 8mirval 28639 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
101, 9eqtrid 2783 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
11 simplr 768 . . . . . 6 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → 𝑦 = 𝐵)
1211oveq2d 7426 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 𝑦) = (𝐴 𝐵))
1312eqeq2d 2747 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → ((𝐴 𝑧) = (𝐴 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝐵)))
1411oveq2d 7426 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵))
1514eleq2d 2821 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵)))
1613, 15anbi12d 632 . . 3 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
1716riotabidva 7386 . 2 ((𝜑𝑦 = 𝐵) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
18 mirfv.b . 2 (𝜑𝐵𝑃)
19 riotaex 7371 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V
2019a1i 11 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V)
2110, 17, 18, 20fvmptd 6998 1 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  pInvGcmir 28636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-mir 28637
This theorem is referenced by:  mircgr  28641  mirbtwn  28642  ismir  28643  mirf  28644  mireq  28649
  Copyright terms: Public domain W3C validator