|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version | ||
| Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) | 
| Ref | Expression | 
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) | 
| mirval.d | ⊢ − = (dist‘𝐺) | 
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) | 
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) | 
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) | 
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) | 
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| Ref | Expression | 
|---|---|
| mirfv | ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 2 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | mirval 28663 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) | 
| 10 | 1, 9 | eqtrid 2789 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) | 
| 11 | simplr 769 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → 𝑦 = 𝐵) | |
| 12 | 11 | oveq2d 7447 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 − 𝑦) = (𝐴 − 𝐵)) | 
| 13 | 12 | eqeq2d 2748 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → ((𝐴 − 𝑧) = (𝐴 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝐵))) | 
| 14 | 11 | oveq2d 7447 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵)) | 
| 15 | 14 | eleq2d 2827 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵))) | 
| 16 | 13, 15 | anbi12d 632 | . . 3 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | 
| 17 | 16 | riotabidva 7407 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | 
| 18 | mirfv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 19 | riotaex 7392 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V | |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V) | 
| 21 | 10, 17, 18, 20 | fvmptd 7023 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 (class class class)co 7431 Basecbs 17247 distcds 17306 TarskiGcstrkg 28435 Itvcitv 28441 LineGclng 28442 pInvGcmir 28660 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-mir 28661 | 
| This theorem is referenced by: mircgr 28665 mirbtwn 28666 ismir 28667 mirf 28668 mireq 28673 | 
| Copyright terms: Public domain | W3C validator |