![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version |
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirfv | ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
2 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mirval 25899 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
10 | 1, 9 | syl5eq 2843 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
11 | simplr 786 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → 𝑦 = 𝐵) | |
12 | 11 | oveq2d 6892 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 − 𝑦) = (𝐴 − 𝐵)) |
13 | 12 | eqeq2d 2807 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → ((𝐴 − 𝑧) = (𝐴 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝐵))) |
14 | 11 | oveq2d 6892 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵)) |
15 | 14 | eleq2d 2862 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵))) |
16 | 13, 15 | anbi12d 625 | . . 3 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
17 | 16 | riotabidva 6853 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
18 | mirfv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | riotaex 6841 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V | |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V) |
21 | 10, 17, 18, 20 | fvmptd 6511 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3383 ↦ cmpt 4920 ‘cfv 6099 ℩crio 6836 (class class class)co 6876 Basecbs 16181 distcds 16273 TarskiGcstrkg 25678 Itvcitv 25684 LineGclng 25685 pInvGcmir 25896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-mir 25897 |
This theorem is referenced by: mircgr 25901 mirbtwn 25902 ismir 25903 mirf 25904 mireq 25909 |
Copyright terms: Public domain | W3C validator |