| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version | ||
| Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
| Ref | Expression |
|---|---|
| mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
| mirval.d | ⊢ − = (dist‘𝐺) |
| mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
| mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
| mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
| mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mirfv | ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
| 2 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
| 3 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
| 4 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
| 5 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
| 6 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
| 7 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 9 | 2, 3, 4, 5, 6, 7, 8 | mirval 28653 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 10 | 1, 9 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
| 11 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → 𝑦 = 𝐵) | |
| 12 | 11 | oveq2d 7371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 − 𝑦) = (𝐴 − 𝐵)) |
| 13 | 12 | eqeq2d 2744 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → ((𝐴 − 𝑧) = (𝐴 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝐵))) |
| 14 | 11 | oveq2d 7371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵)) |
| 15 | 14 | eleq2d 2819 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵))) |
| 16 | 13, 15 | anbi12d 632 | . . 3 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 17 | 16 | riotabidva 7331 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| 18 | mirfv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 19 | riotaex 7316 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V | |
| 20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V) |
| 21 | 10, 17, 18, 20 | fvmptd 6945 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5176 ‘cfv 6489 ℩crio 7311 (class class class)co 7355 Basecbs 17127 distcds 17177 TarskiGcstrkg 28425 Itvcitv 28431 LineGclng 28432 pInvGcmir 28650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-mir 28651 |
| This theorem is referenced by: mircgr 28655 mirbtwn 28656 ismir 28657 mirf 28658 mireq 28663 |
| Copyright terms: Public domain | W3C validator |