![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version |
Description: Value of the point inversion function π. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirval.a | β’ (π β π΄ β π) |
mirfv.m | β’ π = (πβπ΄) |
mirfv.b | β’ (π β π΅ β π) |
Ref | Expression |
---|---|
mirfv | β’ (π β (πβπ΅) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirfv.m | . . 3 β’ π = (πβπ΄) | |
2 | mirval.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | mirval.d | . . . 4 β’ β = (distβπΊ) | |
4 | mirval.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | mirval.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
6 | mirval.s | . . . 4 β’ π = (pInvGβπΊ) | |
7 | mirval.g | . . . 4 β’ (π β πΊ β TarskiG) | |
8 | mirval.a | . . . 4 β’ (π β π΄ β π) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mirval 28339 | . . 3 β’ (π β (πβπ΄) = (π¦ β π β¦ (β©π§ β π ((π΄ β π§) = (π΄ β π¦) β§ π΄ β (π§πΌπ¦))))) |
10 | 1, 9 | eqtrid 2783 | . 2 β’ (π β π = (π¦ β π β¦ (β©π§ β π ((π΄ β π§) = (π΄ β π¦) β§ π΄ β (π§πΌπ¦))))) |
11 | simplr 766 | . . . . . 6 β’ (((π β§ π¦ = π΅) β§ π§ β π) β π¦ = π΅) | |
12 | 11 | oveq2d 7428 | . . . . 5 β’ (((π β§ π¦ = π΅) β§ π§ β π) β (π΄ β π¦) = (π΄ β π΅)) |
13 | 12 | eqeq2d 2742 | . . . 4 β’ (((π β§ π¦ = π΅) β§ π§ β π) β ((π΄ β π§) = (π΄ β π¦) β (π΄ β π§) = (π΄ β π΅))) |
14 | 11 | oveq2d 7428 | . . . . 5 β’ (((π β§ π¦ = π΅) β§ π§ β π) β (π§πΌπ¦) = (π§πΌπ΅)) |
15 | 14 | eleq2d 2818 | . . . 4 β’ (((π β§ π¦ = π΅) β§ π§ β π) β (π΄ β (π§πΌπ¦) β π΄ β (π§πΌπ΅))) |
16 | 13, 15 | anbi12d 630 | . . 3 β’ (((π β§ π¦ = π΅) β§ π§ β π) β (((π΄ β π§) = (π΄ β π¦) β§ π΄ β (π§πΌπ¦)) β ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
17 | 16 | riotabidva 7388 | . 2 β’ ((π β§ π¦ = π΅) β (β©π§ β π ((π΄ β π§) = (π΄ β π¦) β§ π΄ β (π§πΌπ¦))) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
18 | mirfv.b | . 2 β’ (π β π΅ β π) | |
19 | riotaex 7372 | . . 3 β’ (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) β V | |
20 | 19 | a1i 11 | . 2 β’ (π β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) β V) |
21 | 10, 17, 18, 20 | fvmptd 7005 | 1 β’ (π β (πβπ΅) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 β¦ cmpt 5231 βcfv 6543 β©crio 7367 (class class class)co 7412 Basecbs 17151 distcds 17213 TarskiGcstrkg 28111 Itvcitv 28117 LineGclng 28118 pInvGcmir 28336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-mir 28337 |
This theorem is referenced by: mircgr 28341 mirbtwn 28342 ismir 28343 mirf 28344 mireq 28349 |
Copyright terms: Public domain | W3C validator |