![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirfv | Structured version Visualization version GIF version |
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
mirfv.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
Ref | Expression |
---|---|
mirfv | ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirfv.m | . . 3 ⊢ 𝑀 = (𝑆‘𝐴) | |
2 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
7 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | 2, 3, 4, 5, 6, 7, 8 | mirval 28681 | . . 3 ⊢ (𝜑 → (𝑆‘𝐴) = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
10 | 1, 9 | eqtrid 2792 | . 2 ⊢ (𝜑 → 𝑀 = (𝑦 ∈ 𝑃 ↦ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))))) |
11 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → 𝑦 = 𝐵) | |
12 | 11 | oveq2d 7464 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 − 𝑦) = (𝐴 − 𝐵)) |
13 | 12 | eqeq2d 2751 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → ((𝐴 − 𝑧) = (𝐴 − 𝑦) ↔ (𝐴 − 𝑧) = (𝐴 − 𝐵))) |
14 | 11 | oveq2d 7464 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵)) |
15 | 14 | eleq2d 2830 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵))) |
16 | 13, 15 | anbi12d 631 | . . 3 ⊢ (((𝜑 ∧ 𝑦 = 𝐵) ∧ 𝑧 ∈ 𝑃) → (((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
17 | 16 | riotabidva 7424 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
18 | mirfv.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
19 | riotaex 7408 | . . 3 ⊢ (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V | |
20 | 19 | a1i 11 | . 2 ⊢ (𝜑 → (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V) |
21 | 10, 17, 18, 20 | fvmptd 7036 | 1 ⊢ (𝜑 → (𝑀‘𝐵) = (℩𝑧 ∈ 𝑃 ((𝐴 − 𝑧) = (𝐴 − 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 pInvGcmir 28678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-mir 28679 |
This theorem is referenced by: mircgr 28683 mirbtwn 28684 ismir 28685 mirf 28686 mireq 28691 |
Copyright terms: Public domain | W3C validator |