MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirfv Structured version   Visualization version   GIF version

Theorem mirfv 28447
Description: Value of the point inversion function 𝑀. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 30-May-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirfv (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Distinct variable groups:   𝑧,𝐴   𝑧,𝐵   𝑧,𝐺   𝑧,𝑀   𝑧,𝐼   𝑧,𝑃   𝜑,𝑧   𝑧,
Allowed substitution hints:   𝑆(𝑧)   𝐿(𝑧)

Proof of Theorem mirfv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mirfv.m . . 3 𝑀 = (𝑆𝐴)
2 mirval.p . . . 4 𝑃 = (Base‘𝐺)
3 mirval.d . . . 4 = (dist‘𝐺)
4 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
5 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
6 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
7 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
8 mirval.a . . . 4 (𝜑𝐴𝑃)
92, 3, 4, 5, 6, 7, 8mirval 28446 . . 3 (𝜑 → (𝑆𝐴) = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
101, 9eqtrid 2779 . 2 (𝜑𝑀 = (𝑦𝑃 ↦ (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)))))
11 simplr 768 . . . . . 6 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → 𝑦 = 𝐵)
1211oveq2d 7430 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 𝑦) = (𝐴 𝐵))
1312eqeq2d 2738 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → ((𝐴 𝑧) = (𝐴 𝑦) ↔ (𝐴 𝑧) = (𝐴 𝐵)))
1411oveq2d 7430 . . . . 5 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝑧𝐼𝑦) = (𝑧𝐼𝐵))
1514eleq2d 2814 . . . 4 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (𝐴 ∈ (𝑧𝐼𝑦) ↔ 𝐴 ∈ (𝑧𝐼𝐵)))
1613, 15anbi12d 630 . . 3 (((𝜑𝑦 = 𝐵) ∧ 𝑧𝑃) → (((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦)) ↔ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
1716riotabidva 7390 . 2 ((𝜑𝑦 = 𝐵) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝑦) ∧ 𝐴 ∈ (𝑧𝐼𝑦))) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
18 mirfv.b . 2 (𝜑𝐵𝑃)
19 riotaex 7374 . . 3 (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V
2019a1i 11 . 2 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ V)
2110, 17, 18, 20fvmptd 7006 1 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3469  cmpt 5225  cfv 6542  crio 7369  (class class class)co 7414  Basecbs 17171  distcds 17233  TarskiGcstrkg 28218  Itvcitv 28224  LineGclng 28225  pInvGcmir 28443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-mir 28444
This theorem is referenced by:  mircgr  28448  mirbtwn  28449  ismir  28450  mirf  28451  mireq  28456
  Copyright terms: Public domain W3C validator