![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptsuppd | Structured version Visualization version GIF version |
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
mptsuppdifd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
mptsuppdifd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
mptsuppdifd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
mptsuppd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
mptsuppd | ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptsuppdifd.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mptsuppdifd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | mptsuppdifd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
4 | 1, 2, 3 | mptsuppdifd 8122 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
5 | eldifsn 4752 | . . . 4 ⊢ (𝐵 ∈ (V ∖ {𝑍}) ↔ (𝐵 ∈ V ∧ 𝐵 ≠ 𝑍)) | |
6 | mptsuppd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) | |
7 | 6 | elexd 3468 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
8 | 7 | biantrurd 534 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≠ 𝑍 ↔ (𝐵 ∈ V ∧ 𝐵 ≠ 𝑍))) |
9 | 5, 8 | bitr4id 290 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) ↔ 𝐵 ≠ 𝑍)) |
10 | 9 | rabbidva 3417 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
11 | 4, 10 | eqtrd 2777 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2944 {crab 3410 Vcvv 3448 ∖ cdif 3912 {csn 4591 ↦ cmpt 5193 (class class class)co 7362 supp csupp 8097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-supp 8098 |
This theorem is referenced by: rmsupp0 46518 domnmsuppn0 46519 rmsuppss 46520 suppmptcfin 46529 lcoc0 46577 linc1 46580 |
Copyright terms: Public domain | W3C validator |