MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppd Structured version   Visualization version   GIF version

Theorem mptsuppd 8169
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
mptsuppd.b ((𝜑𝑥𝐴) → 𝐵𝑈)
Assertion
Ref Expression
mptsuppd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵𝑍})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppd
StepHypRef Expression
1 mptsuppdifd.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . 3 (𝜑𝐴𝑉)
3 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
41, 2, 3mptsuppdifd 8168 . 2 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
5 eldifsn 4753 . . . 4 (𝐵 ∈ (V ∖ {𝑍}) ↔ (𝐵 ∈ V ∧ 𝐵𝑍))
6 mptsuppd.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑈)
76elexd 3474 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
87biantrurd 532 . . . 4 ((𝜑𝑥𝐴) → (𝐵𝑍 ↔ (𝐵 ∈ V ∧ 𝐵𝑍)))
95, 8bitr4id 290 . . 3 ((𝜑𝑥𝐴) → (𝐵 ∈ (V ∖ {𝑍}) ↔ 𝐵𝑍))
109rabbidva 3415 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})} = {𝑥𝐴𝐵𝑍})
114, 10eqtrd 2765 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  Vcvv 3450  cdif 3914  {csn 4592  cmpt 5191  (class class class)co 7390   supp csupp 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-supp 8143
This theorem is referenced by:  rmsupp0  48360  domnmsuppn0  48361  rmsuppss  48362  suppmptcfin  48368  lcoc0  48415  linc1  48418
  Copyright terms: Public domain W3C validator