MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppd Structured version   Visualization version   GIF version

Theorem mptsuppd 8212
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
mptsuppd.b ((𝜑𝑥𝐴) → 𝐵𝑈)
Assertion
Ref Expression
mptsuppd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵𝑍})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppd
StepHypRef Expression
1 mptsuppdifd.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . 3 (𝜑𝐴𝑉)
3 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
41, 2, 3mptsuppdifd 8211 . 2 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
5 eldifsn 4786 . . . 4 (𝐵 ∈ (V ∖ {𝑍}) ↔ (𝐵 ∈ V ∧ 𝐵𝑍))
6 mptsuppd.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝑈)
76elexd 3504 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ V)
87biantrurd 532 . . . 4 ((𝜑𝑥𝐴) → (𝐵𝑍 ↔ (𝐵 ∈ V ∧ 𝐵𝑍)))
95, 8bitr4id 290 . . 3 ((𝜑𝑥𝐴) → (𝐵 ∈ (V ∖ {𝑍}) ↔ 𝐵𝑍))
109rabbidva 3443 . 2 (𝜑 → {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})} = {𝑥𝐴𝐵𝑍})
114, 10eqtrd 2777 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  Vcvv 3480  cdif 3948  {csn 4626  cmpt 5225  (class class class)co 7431   supp csupp 8185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-supp 8186
This theorem is referenced by:  rmsupp0  48284  domnmsuppn0  48285  rmsuppss  48286  suppmptcfin  48292  lcoc0  48339  linc1  48342
  Copyright terms: Public domain W3C validator