Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptsuppd | Structured version Visualization version GIF version |
Description: The support of a function in maps-to notation. (Contributed by AV, 10-Apr-2019.) (Revised by AV, 28-May-2019.) |
Ref | Expression |
---|---|
mptsuppdifd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
mptsuppdifd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
mptsuppdifd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
mptsuppd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) |
Ref | Expression |
---|---|
mptsuppd | ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptsuppdifd.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mptsuppdifd.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | mptsuppdifd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
4 | 1, 2, 3 | mptsuppdifd 7973 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
5 | eldifsn 4717 | . . . 4 ⊢ (𝐵 ∈ (V ∖ {𝑍}) ↔ (𝐵 ∈ V ∧ 𝐵 ≠ 𝑍)) | |
6 | mptsuppd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑈) | |
7 | 6 | elexd 3442 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ V) |
8 | 7 | biantrurd 532 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≠ 𝑍 ↔ (𝐵 ∈ V ∧ 𝐵 ≠ 𝑍))) |
9 | 5, 8 | bitr4id 289 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ (V ∖ {𝑍}) ↔ 𝐵 ≠ 𝑍)) |
10 | 9 | rabbidva 3402 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
11 | 4, 10 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ 𝑍}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: rmsupp0 45592 domnmsuppn0 45593 rmsuppss 45594 suppmptcfin 45603 lcoc0 45651 linc1 45654 |
Copyright terms: Public domain | W3C validator |