MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppdifd Structured version   Visualization version   GIF version

Theorem mptsuppdifd 8175
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptsuppdifd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppdifd
StepHypRef Expression
1 mptsuppdifd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . . . 5 (𝜑𝐴𝑉)
32mptexd 7228 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ V)
41, 3eqeltrid 2836 . . 3 (𝜑𝐹 ∈ V)
5 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
6 suppimacnv 8163 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
81mptpreima 6237 . 2 (𝐹 “ (V ∖ {𝑍})) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})}
97, 8eqtrdi 2787 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2105  {crab 3431  Vcvv 3473  cdif 3945  {csn 4628  cmpt 5231  ccnv 5675  cima 5679  (class class class)co 7412   supp csupp 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-supp 8151
This theorem is referenced by:  mptsuppd  8176  extmptsuppeq  8177  suppssov1  8187  suppss2  8189  suppssfv  8191
  Copyright terms: Public domain W3C validator