MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppdifd Structured version   Visualization version   GIF version

Theorem mptsuppdifd 7928
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptsuppdifd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppdifd
StepHypRef Expression
1 mptsuppdifd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . . . 5 (𝜑𝐴𝑉)
32mptexd 7040 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ V)
41, 3eqeltrid 2842 . . 3 (𝜑𝐹 ∈ V)
5 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
6 suppimacnv 7916 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 587 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
81mptpreima 6101 . 2 (𝐹 “ (V ∖ {𝑍})) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})}
97, 8eqtrdi 2794 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cdif 3863  {csn 4541  cmpt 5135  ccnv 5550  cima 5554  (class class class)co 7213   supp csupp 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-supp 7904
This theorem is referenced by:  mptsuppd  7929  extmptsuppeq  7930  suppssov1  7940  suppss2  7942  suppssfv  7944
  Copyright terms: Public domain W3C validator