![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptsuppdifd | Structured version Visualization version GIF version |
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
mptsuppdifd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
mptsuppdifd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
mptsuppdifd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
mptsuppdifd | ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptsuppdifd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mptsuppdifd.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7233 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | 1, 3 | eqeltrid 2830 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | mptsuppdifd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | suppimacnv 8180 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
7 | 4, 5, 6 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
8 | 1 | mptpreima 6241 | . 2 ⊢ (◡𝐹 “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} |
9 | 7, 8 | eqtrdi 2782 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 {crab 3419 Vcvv 3462 ∖ cdif 3943 {csn 4623 ↦ cmpt 5228 ◡ccnv 5673 “ cima 5677 (class class class)co 7416 supp csupp 8166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-supp 8167 |
This theorem is referenced by: mptsuppd 8193 extmptsuppeq 8194 suppssov1 8204 suppssov2 8205 suppss2 8207 suppssfv 8209 |
Copyright terms: Public domain | W3C validator |