![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mptsuppdifd | Structured version Visualization version GIF version |
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
mptsuppdifd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
mptsuppdifd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
mptsuppdifd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
mptsuppdifd | ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptsuppdifd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mptsuppdifd.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7228 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | 1, 3 | eqeltrid 2836 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | mptsuppdifd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | suppimacnv 8163 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
7 | 4, 5, 6 | syl2anc 583 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
8 | 1 | mptpreima 6237 | . 2 ⊢ (◡𝐹 “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} |
9 | 7, 8 | eqtrdi 2787 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3431 Vcvv 3473 ∖ cdif 3945 {csn 4628 ↦ cmpt 5231 ◡ccnv 5675 “ cima 5679 (class class class)co 7412 supp csupp 8150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-supp 8151 |
This theorem is referenced by: mptsuppd 8176 extmptsuppeq 8177 suppssov1 8187 suppss2 8189 suppssfv 8191 |
Copyright terms: Public domain | W3C validator |