Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mptsuppdifd | Structured version Visualization version GIF version |
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.) |
Ref | Expression |
---|---|
mptsuppdifd.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
mptsuppdifd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
mptsuppdifd.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
mptsuppdifd | ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mptsuppdifd.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | mptsuppdifd.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | 2 | mptexd 7139 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) |
4 | 1, 3 | eqeltrid 2842 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
5 | mptsuppdifd.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | suppimacnv 8037 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) | |
7 | 4, 5, 6 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝐹 supp 𝑍) = (◡𝐹 “ (V ∖ {𝑍}))) |
8 | 1 | mptpreima 6163 | . 2 ⊢ (◡𝐹 “ (V ∖ {𝑍})) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})} |
9 | 7, 8 | eqtrdi 2793 | 1 ⊢ (𝜑 → (𝐹 supp 𝑍) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (V ∖ {𝑍})}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3404 Vcvv 3441 ∖ cdif 3894 {csn 4571 ↦ cmpt 5170 ◡ccnv 5606 “ cima 5610 (class class class)co 7315 supp csupp 8024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-supp 8025 |
This theorem is referenced by: mptsuppd 8050 extmptsuppeq 8051 suppssov1 8061 suppss2 8063 suppssfv 8065 |
Copyright terms: Public domain | W3C validator |