MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppdifd Structured version   Visualization version   GIF version

Theorem mptsuppdifd 8126
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptsuppdifd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppdifd
StepHypRef Expression
1 mptsuppdifd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . . . 5 (𝜑𝐴𝑉)
32mptexd 7164 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ V)
41, 3eqeltrid 2832 . . 3 (𝜑𝐹 ∈ V)
5 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
6 suppimacnv 8114 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 584 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
81mptpreima 6191 . 2 (𝐹 “ (V ∖ {𝑍})) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})}
97, 8eqtrdi 2780 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3396  Vcvv 3438  cdif 3902  {csn 4579  cmpt 5176  ccnv 5622  cima 5626  (class class class)co 7353   supp csupp 8100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-supp 8101
This theorem is referenced by:  mptsuppd  8127  extmptsuppeq  8128  suppssov1  8137  suppssov2  8138  suppss2  8140  suppssfv  8142
  Copyright terms: Public domain W3C validator