MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mptsuppdifd Structured version   Visualization version   GIF version

Theorem mptsuppdifd 8227
Description: The support of a function in maps-to notation with a class difference. (Contributed by AV, 28-May-2019.)
Hypotheses
Ref Expression
mptsuppdifd.f 𝐹 = (𝑥𝐴𝐵)
mptsuppdifd.a (𝜑𝐴𝑉)
mptsuppdifd.z (𝜑𝑍𝑊)
Assertion
Ref Expression
mptsuppdifd (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Distinct variable groups:   𝑥,𝐴   𝑥,𝑍
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem mptsuppdifd
StepHypRef Expression
1 mptsuppdifd.f . . . 4 𝐹 = (𝑥𝐴𝐵)
2 mptsuppdifd.a . . . . 5 (𝜑𝐴𝑉)
32mptexd 7261 . . . 4 (𝜑 → (𝑥𝐴𝐵) ∈ V)
41, 3eqeltrid 2848 . . 3 (𝜑𝐹 ∈ V)
5 mptsuppdifd.z . . 3 (𝜑𝑍𝑊)
6 suppimacnv 8215 . . 3 ((𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
74, 5, 6syl2anc 583 . 2 (𝜑 → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
81mptpreima 6269 . 2 (𝐹 “ (V ∖ {𝑍})) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})}
97, 8eqtrdi 2796 1 (𝜑 → (𝐹 supp 𝑍) = {𝑥𝐴𝐵 ∈ (V ∖ {𝑍})})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  cdif 3973  {csn 4648  cmpt 5249  ccnv 5699  cima 5703  (class class class)co 7448   supp csupp 8201
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202
This theorem is referenced by:  mptsuppd  8228  extmptsuppeq  8229  suppssov1  8238  suppssov2  8239  suppss2  8241  suppssfv  8243
  Copyright terms: Public domain W3C validator