Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsuppss Structured version   Visualization version   GIF version

Theorem rmsuppss 44563
 Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsuppss (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsuppss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7141 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
2 simpll1 1208 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
3 simpll3 1210 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶𝑅)
4 rmsuppss.r . . . . . . . . 9 𝑅 = (Base‘𝑀)
5 eqid 2820 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
6 eqid 2820 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
74, 5, 6ringrz 19317 . . . . . . . 8 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
82, 3, 7syl2anc 586 . . . . . . 7 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
91, 8sylan9eqr 2877 . . . . . 6 (((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
109ex 415 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
1110necon3d 3027 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
1211ss2rabdv 4031 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
13 elmapi 8406 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
1413fdmd 6499 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → dom 𝐴 = 𝑉)
1514adantl 484 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → dom 𝐴 = 𝑉)
16 rabeq 3462 . . . 4 (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1715, 16syl 17 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1812, 17sseqtrrd 3987 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
19 fveq2 6646 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
2019oveq2d 7149 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
2120cbvmptv 5145 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
22 simpl2 1188 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
23 fvexd 6661 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
24 ovexd 7168 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
2521, 22, 23, 24mptsuppd 7831 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
26 elmapfun 8408 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
2726adantl 484 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
28 simpr 487 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
29 suppval1 7814 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3027, 28, 23, 29syl3anc 1367 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3118, 25, 303sstr4d 3993 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006  {crab 3129  Vcvv 3473   ⊆ wss 3913   ↦ cmpt 5122  dom cdm 5531  Fun wfun 6325  ‘cfv 6331  (class class class)co 7133   supp csupp 7808   ↑m cmap 8384  Basecbs 16462  .rcmulr 16545  0gc0g 16692  Ringcrg 19276 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-er 8267  df-map 8386  df-en 8488  df-dom 8489  df-sdom 8490  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-plusg 16557  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-mgp 19219  df-ring 19278 This theorem is referenced by:  rmsuppfi  44566
 Copyright terms: Public domain W3C validator