![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsuppss | Structured version Visualization version GIF version |
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.) |
Ref | Expression |
---|---|
rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
rmsuppss | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 6884 | . . . . . . 7 ⊢ ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (𝐶(.r‘𝑀)(0g‘𝑀))) | |
2 | simpll1 1270 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
3 | simpll3 1274 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 ∈ 𝑅) | |
4 | rmsuppss.r | . . . . . . . . 9 ⊢ 𝑅 = (Base‘𝑀) | |
5 | eqid 2797 | . . . . . . . . 9 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
6 | eqid 2797 | . . . . . . . . 9 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
7 | 4, 5, 6 | ringrz 18901 | . . . . . . . 8 ⊢ ((𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
8 | 2, 3, 7 | syl2anc 580 | . . . . . . 7 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
9 | 1, 8 | sylan9eqr 2853 | . . . . . 6 ⊢ (((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) = (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
10 | 9 | ex 402 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀))) |
11 | 10 | necon3d 2990 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) → (𝐴‘𝑤) ≠ (0g‘𝑀))) |
12 | 11 | ss2rabdv 3877 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
13 | elmapi 8115 | . . . . . 6 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) → 𝐴:𝑉⟶𝑅) | |
14 | 13 | fdmd 6263 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) → dom 𝐴 = 𝑉) |
15 | 14 | adantl 474 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → dom 𝐴 = 𝑉) |
16 | rabeq 3374 | . . . 4 ⊢ (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
18 | 12, 17 | sseqtr4d 3836 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
19 | fveq2 6409 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
20 | 19 | oveq2d 6892 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
21 | 20 | cbvmptv 4941 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
22 | simpl2 1245 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → 𝑉 ∈ 𝑋) | |
23 | fvexd 6424 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → (0g‘𝑀) ∈ V) | |
24 | ovexd 6910 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
25 | 21, 22, 23, 24 | mptsuppd 7553 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
26 | elmapfun 8117 | . . . 4 ⊢ (𝐴 ∈ (𝑅 ↑𝑚 𝑉) → Fun 𝐴) | |
27 | 26 | adantl 474 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → Fun 𝐴) |
28 | simpr 478 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) | |
29 | suppval1 7536 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉) ∧ (0g‘𝑀) ∈ V) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
30 | 27, 28, 23, 29 | syl3anc 1491 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
31 | 18, 25, 30 | 3sstr4d 3842 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑𝑚 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2969 {crab 3091 Vcvv 3383 ⊆ wss 3767 ↦ cmpt 4920 dom cdm 5310 Fun wfun 6093 ‘cfv 6099 (class class class)co 6876 supp csupp 7530 ↑𝑚 cmap 8093 Basecbs 16181 .rcmulr 16265 0gc0g 16412 Ringcrg 18860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-1cn 10280 ax-icn 10281 ax-addcl 10282 ax-addrcl 10283 ax-mulcl 10284 ax-mulrcl 10285 ax-mulcom 10286 ax-addass 10287 ax-mulass 10288 ax-distr 10289 ax-i2m1 10290 ax-1ne0 10291 ax-1rid 10292 ax-rnegex 10293 ax-rrecex 10294 ax-cnre 10295 ax-pre-lttri 10296 ax-pre-lttrn 10297 ax-pre-ltadd 10298 ax-pre-mulgt0 10299 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-pss 3783 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-tp 4371 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-tr 4944 df-id 5218 df-eprel 5223 df-po 5231 df-so 5232 df-fr 5269 df-we 5271 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-pred 5896 df-ord 5942 df-on 5943 df-lim 5944 df-suc 5945 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-om 7298 df-1st 7399 df-2nd 7400 df-supp 7531 df-wrecs 7643 df-recs 7705 df-rdg 7743 df-er 7980 df-map 8095 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-sub 10556 df-neg 10557 df-nn 11311 df-2 11372 df-ndx 16184 df-slot 16185 df-base 16187 df-sets 16188 df-plusg 16277 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-mgp 18803 df-ring 18862 |
This theorem is referenced by: rmsuppfi 42941 |
Copyright terms: Public domain | W3C validator |