![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsuppss | Structured version Visualization version GIF version |
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.) |
Ref | Expression |
---|---|
rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
rmsuppss | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7422 | . . . . . . 7 ⊢ ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (𝐶(.r‘𝑀)(0g‘𝑀))) | |
2 | simpll1 1210 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
3 | simpll3 1212 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 ∈ 𝑅) | |
4 | rmsuppss.r | . . . . . . . . 9 ⊢ 𝑅 = (Base‘𝑀) | |
5 | eqid 2727 | . . . . . . . . 9 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
6 | eqid 2727 | . . . . . . . . 9 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
7 | 4, 5, 6 | ringrz 20212 | . . . . . . . 8 ⊢ ((𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
8 | 2, 3, 7 | syl2anc 583 | . . . . . . 7 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
9 | 1, 8 | sylan9eqr 2789 | . . . . . 6 ⊢ (((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) = (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
10 | 9 | ex 412 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀))) |
11 | 10 | necon3d 2956 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) → (𝐴‘𝑤) ≠ (0g‘𝑀))) |
12 | 11 | ss2rabdv 4069 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
13 | elmapi 8857 | . . . . . 6 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
14 | 13 | fdmd 6727 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → dom 𝐴 = 𝑉) |
15 | 14 | adantl 481 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → dom 𝐴 = 𝑉) |
16 | rabeq 3441 | . . . 4 ⊢ (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
18 | 12, 17 | sseqtrrd 4019 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
19 | fveq2 6891 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
20 | 19 | oveq2d 7430 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
21 | 20 | cbvmptv 5255 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
22 | simpl2 1190 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | |
23 | fvexd 6906 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | |
24 | ovexd 7449 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
25 | 21, 22, 23, 24 | mptsuppd 8183 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
26 | elmapfun 8874 | . . . 4 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → Fun 𝐴) | |
27 | 26 | adantl 481 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun 𝐴) |
28 | simpr 484 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) | |
29 | suppval1 8163 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑀) ∈ V) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
30 | 27, 28, 23, 29 | syl3anc 1369 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
31 | 18, 25, 30 | 3sstr4d 4025 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 {crab 3427 Vcvv 3469 ⊆ wss 3944 ↦ cmpt 5225 dom cdm 5672 Fun wfun 6536 ‘cfv 6542 (class class class)co 7414 supp csupp 8157 ↑m cmap 8834 Basecbs 17165 .rcmulr 17219 0gc0g 17406 Ringcrg 20157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-map 8836 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-plusg 17231 df-0g 17408 df-mgm 18585 df-sgrp 18664 df-mnd 18680 df-grp 18878 df-minusg 18879 df-cmn 19721 df-abl 19722 df-mgp 20059 df-rng 20077 df-ur 20106 df-ring 20159 |
This theorem is referenced by: rmsuppfi 47350 |
Copyright terms: Public domain | W3C validator |