Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmsuppss Structured version   Visualization version   GIF version

Theorem rmsuppss 47295
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.)
Hypothesis
Ref Expression
rmsuppss.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
rmsuppss (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝑀   𝑣,𝑅   𝑣,𝑋   𝑣,𝑉

Proof of Theorem rmsuppss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 oveq2 7410 . . . . . . 7 ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (𝐶(.r𝑀)(0g𝑀)))
2 simpll1 1209 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝑀 ∈ Ring)
3 simpll3 1211 . . . . . . . 8 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → 𝐶𝑅)
4 rmsuppss.r . . . . . . . . 9 𝑅 = (Base‘𝑀)
5 eqid 2724 . . . . . . . . 9 (.r𝑀) = (.r𝑀)
6 eqid 2724 . . . . . . . . 9 (0g𝑀) = (0g𝑀)
74, 5, 6ringrz 20189 . . . . . . . 8 ((𝑀 ∈ Ring ∧ 𝐶𝑅) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
82, 3, 7syl2anc 583 . . . . . . 7 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(0g𝑀)) = (0g𝑀))
91, 8sylan9eqr 2786 . . . . . 6 (((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) ∧ (𝐴𝑤) = (0g𝑀)) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀))
109ex 412 . . . . 5 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐴𝑤) = (0g𝑀) → (𝐶(.r𝑀)(𝐴𝑤)) = (0g𝑀)))
1110necon3d 2953 . . . 4 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → ((𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀) → (𝐴𝑤) ≠ (0g𝑀)))
1211ss2rabdv 4066 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
13 elmapi 8840 . . . . . 6 (𝐴 ∈ (𝑅m 𝑉) → 𝐴:𝑉𝑅)
1413fdmd 6719 . . . . 5 (𝐴 ∈ (𝑅m 𝑉) → dom 𝐴 = 𝑉)
1514adantl 481 . . . 4 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → dom 𝐴 = 𝑉)
16 rabeq 3438 . . . 4 (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1715, 16syl 17 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)} = {𝑤𝑉 ∣ (𝐴𝑤) ≠ (0g𝑀)})
1812, 17sseqtrrd 4016 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
19 fveq2 6882 . . . . 5 (𝑣 = 𝑤 → (𝐴𝑣) = (𝐴𝑤))
2019oveq2d 7418 . . . 4 (𝑣 = 𝑤 → (𝐶(.r𝑀)(𝐴𝑣)) = (𝐶(.r𝑀)(𝐴𝑤)))
2120cbvmptv 5252 . . 3 (𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) = (𝑤𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑤)))
22 simpl2 1189 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝑉𝑋)
23 fvexd 6897 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (0g𝑀) ∈ V)
24 ovexd 7437 . . 3 ((((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) ∧ 𝑤𝑉) → (𝐶(.r𝑀)(𝐴𝑤)) ∈ V)
2521, 22, 23, 24mptsuppd 8167 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) = {𝑤𝑉 ∣ (𝐶(.r𝑀)(𝐴𝑤)) ≠ (0g𝑀)})
26 elmapfun 8857 . . . 4 (𝐴 ∈ (𝑅m 𝑉) → Fun 𝐴)
2726adantl 481 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → Fun 𝐴)
28 simpr 484 . . 3 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → 𝐴 ∈ (𝑅m 𝑉))
29 suppval1 8147 . . 3 ((Fun 𝐴𝐴 ∈ (𝑅m 𝑉) ∧ (0g𝑀) ∈ V) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3027, 28, 23, 29syl3anc 1368 . 2 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → (𝐴 supp (0g𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴𝑤) ≠ (0g𝑀)})
3118, 25, 303sstr4d 4022 1 (((𝑀 ∈ Ring ∧ 𝑉𝑋𝐶𝑅) ∧ 𝐴 ∈ (𝑅m 𝑉)) → ((𝑣𝑉 ↦ (𝐶(.r𝑀)(𝐴𝑣))) supp (0g𝑀)) ⊆ (𝐴 supp (0g𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  {crab 3424  Vcvv 3466  wss 3941  cmpt 5222  dom cdm 5667  Fun wfun 6528  cfv 6534  (class class class)co 7402   supp csupp 8141  m cmap 8817  Basecbs 17149  .rcmulr 17203  0gc0g 17390  Ringcrg 20134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-0g 17392  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-grp 18862  df-minusg 18863  df-cmn 19698  df-abl 19699  df-mgp 20036  df-rng 20054  df-ur 20083  df-ring 20136
This theorem is referenced by:  rmsuppfi  47298
  Copyright terms: Public domain W3C validator