Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmsuppss | Structured version Visualization version GIF version |
Description: The support of a mapping of a multiplication of a constant with a function into a ring is a subset of the support of the function. (Contributed by AV, 11-Apr-2019.) |
Ref | Expression |
---|---|
rmsuppss.r | ⊢ 𝑅 = (Base‘𝑀) |
Ref | Expression |
---|---|
rmsuppss | ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 7181 | . . . . . . 7 ⊢ ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (𝐶(.r‘𝑀)(0g‘𝑀))) | |
2 | simpll1 1213 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝑀 ∈ Ring) | |
3 | simpll3 1215 | . . . . . . . 8 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → 𝐶 ∈ 𝑅) | |
4 | rmsuppss.r | . . . . . . . . 9 ⊢ 𝑅 = (Base‘𝑀) | |
5 | eqid 2739 | . . . . . . . . 9 ⊢ (.r‘𝑀) = (.r‘𝑀) | |
6 | eqid 2739 | . . . . . . . . 9 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
7 | 4, 5, 6 | ringrz 19463 | . . . . . . . 8 ⊢ ((𝑀 ∈ Ring ∧ 𝐶 ∈ 𝑅) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
8 | 2, 3, 7 | syl2anc 587 | . . . . . . 7 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(0g‘𝑀)) = (0g‘𝑀)) |
9 | 1, 8 | sylan9eqr 2796 | . . . . . 6 ⊢ (((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) ∧ (𝐴‘𝑤) = (0g‘𝑀)) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀)) |
10 | 9 | ex 416 | . . . . 5 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐴‘𝑤) = (0g‘𝑀) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) = (0g‘𝑀))) |
11 | 10 | necon3d 2956 | . . . 4 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → ((𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀) → (𝐴‘𝑤) ≠ (0g‘𝑀))) |
12 | 11 | ss2rabdv 3966 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
13 | elmapi 8462 | . . . . . 6 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → 𝐴:𝑉⟶𝑅) | |
14 | 13 | fdmd 6516 | . . . . 5 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → dom 𝐴 = 𝑉) |
15 | 14 | adantl 485 | . . . 4 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → dom 𝐴 = 𝑉) |
16 | rabeq 3386 | . . . 4 ⊢ (dom 𝐴 = 𝑉 → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)} = {𝑤 ∈ 𝑉 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
18 | 12, 17 | sseqtrrd 3919 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)} ⊆ {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
19 | fveq2 6677 | . . . . 5 ⊢ (𝑣 = 𝑤 → (𝐴‘𝑣) = (𝐴‘𝑤)) | |
20 | 19 | oveq2d 7189 | . . . 4 ⊢ (𝑣 = 𝑤 → (𝐶(.r‘𝑀)(𝐴‘𝑣)) = (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
21 | 20 | cbvmptv 5134 | . . 3 ⊢ (𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) = (𝑤 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑤))) |
22 | simpl2 1193 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝑉 ∈ 𝑋) | |
23 | fvexd 6692 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (0g‘𝑀) ∈ V) | |
24 | ovexd 7208 | . . 3 ⊢ ((((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) ∧ 𝑤 ∈ 𝑉) → (𝐶(.r‘𝑀)(𝐴‘𝑤)) ∈ V) | |
25 | 21, 22, 23, 24 | mptsuppd 7885 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) = {𝑤 ∈ 𝑉 ∣ (𝐶(.r‘𝑀)(𝐴‘𝑤)) ≠ (0g‘𝑀)}) |
26 | elmapfun 8479 | . . . 4 ⊢ (𝐴 ∈ (𝑅 ↑m 𝑉) → Fun 𝐴) | |
27 | 26 | adantl 485 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → Fun 𝐴) |
28 | simpr 488 | . . 3 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → 𝐴 ∈ (𝑅 ↑m 𝑉)) | |
29 | suppval1 7865 | . . 3 ⊢ ((Fun 𝐴 ∧ 𝐴 ∈ (𝑅 ↑m 𝑉) ∧ (0g‘𝑀) ∈ V) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) | |
30 | 27, 28, 23, 29 | syl3anc 1372 | . 2 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → (𝐴 supp (0g‘𝑀)) = {𝑤 ∈ dom 𝐴 ∣ (𝐴‘𝑤) ≠ (0g‘𝑀)}) |
31 | 18, 25, 30 | 3sstr4d 3925 | 1 ⊢ (((𝑀 ∈ Ring ∧ 𝑉 ∈ 𝑋 ∧ 𝐶 ∈ 𝑅) ∧ 𝐴 ∈ (𝑅 ↑m 𝑉)) → ((𝑣 ∈ 𝑉 ↦ (𝐶(.r‘𝑀)(𝐴‘𝑣))) supp (0g‘𝑀)) ⊆ (𝐴 supp (0g‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 {crab 3058 Vcvv 3399 ⊆ wss 3844 ↦ cmpt 5111 dom cdm 5526 Fun wfun 6334 ‘cfv 6340 (class class class)co 7173 supp csupp 7859 ↑m cmap 8440 Basecbs 16589 .rcmulr 16672 0gc0g 16819 Ringcrg 19419 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 ax-1cn 10676 ax-icn 10677 ax-addcl 10678 ax-addrcl 10679 ax-mulcl 10680 ax-mulrcl 10681 ax-mulcom 10682 ax-addass 10683 ax-mulass 10684 ax-distr 10685 ax-i2m1 10686 ax-1ne0 10687 ax-1rid 10688 ax-rnegex 10689 ax-rrecex 10690 ax-cnre 10691 ax-pre-lttri 10692 ax-pre-lttrn 10693 ax-pre-ltadd 10694 ax-pre-mulgt0 10695 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-nel 3040 df-ral 3059 df-rex 3060 df-reu 3061 df-rmo 3062 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7130 df-ov 7176 df-oprab 7177 df-mpo 7178 df-om 7603 df-1st 7717 df-2nd 7718 df-supp 7860 df-wrecs 7979 df-recs 8040 df-rdg 8078 df-er 8323 df-map 8442 df-en 8559 df-dom 8560 df-sdom 8561 df-pnf 10758 df-mnf 10759 df-xr 10760 df-ltxr 10761 df-le 10762 df-sub 10953 df-neg 10954 df-nn 11720 df-2 11782 df-ndx 16592 df-slot 16593 df-base 16595 df-sets 16596 df-plusg 16684 df-0g 16821 df-mgm 17971 df-sgrp 18020 df-mnd 18031 df-grp 18225 df-mgp 19362 df-ring 19421 |
This theorem is referenced by: rmsuppfi 45273 |
Copyright terms: Public domain | W3C validator |