Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs4lem Structured version   Visualization version   GIF version

Theorem isacs4lem 17767
 Description: In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs4lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs4lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐶 ∈ (Moore‘𝑋))
2 elpwi 4529 . . . . . . . 8 (𝑡 ∈ 𝒫 𝒫 𝑋𝑡 ⊆ 𝒫 𝑋)
32ad2antrl 727 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
4 acsdrscl.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
54mrcuni 16881 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ⊆ 𝒫 𝑋) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
61, 3, 5syl2anc 587 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
74mrcf 16869 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
87ffnd 6496 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
98adantr 484 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐹 Fn 𝒫 𝑋)
10 simpll 766 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝐶 ∈ (Moore‘𝑋))
11 simprl 770 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑥𝑦)
12 simprr 772 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑦𝑋)
1310, 4, 11, 12mrcssd 16884 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → (𝐹𝑥) ⊆ (𝐹𝑦))
14 simprr 772 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘𝑡) ∈ Dirset)
152ad2antrl 727 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
164fvexi 6665 . . . . . . . . . . . 12 𝐹 ∈ V
1716imaex 7604 . . . . . . . . . . 11 (𝐹𝑡) ∈ V
1817a1i 11 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ V)
199, 13, 14, 15, 18ipodrsima 17764 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
2019adantlr 714 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
21 fveq2 6651 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → (toInc‘𝑠) = (toInc‘(𝐹𝑡)))
2221eleq1d 2900 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘(𝐹𝑡)) ∈ Dirset))
23 unieq 4830 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → 𝑠 = (𝐹𝑡))
2423eleq1d 2900 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ( 𝑠𝐶 (𝐹𝑡) ∈ 𝐶))
2522, 24imbi12d 348 . . . . . . . . 9 (𝑠 = (𝐹𝑡) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶)))
26 simplr 768 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
27 imassrn 5921 . . . . . . . . . . . 12 (𝐹𝑡) ⊆ ran 𝐹
287frnd 6502 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝐶)
2927, 28sstrid 3962 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ⊆ 𝐶)
3017elpw 4524 . . . . . . . . . . 11 ((𝐹𝑡) ∈ 𝒫 𝐶 ↔ (𝐹𝑡) ⊆ 𝐶)
3129, 30sylibr 237 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ∈ 𝒫 𝐶)
3231ad2antrr 725 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝒫 𝐶)
3325, 26, 32rspcdva 3610 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶))
3420, 33mpd 15 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝐶)
354mrcid 16873 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑡) ∈ 𝐶) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
361, 34, 35syl2anc 587 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
376, 36eqtrd 2859 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹𝑡))
3837exp32 424 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝑡 ∈ 𝒫 𝒫 𝑋 → ((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
3938ralrimiv 3175 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
4039ex 416 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
4140imdistani 572 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∀wral 3132  Vcvv 3479   ⊆ wss 3918  𝒫 cpw 4520  ∪ cuni 4819  ran crn 5537   “ cima 5539   Fn wfn 6331  ‘cfv 6336  Moorecmre 16842  mrClscmrc 16843  Dirsetcdrs 17526  toInccipo 17750 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-dec 12085  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-tset 16573  df-ple 16574  df-ocomp 16575  df-mre 16846  df-mrc 16847  df-proset 17527  df-drs 17528  df-poset 17545  df-ipo 17751 This theorem is referenced by:  acsdrscl  17769  acsficl  17770  isacs5  17771  isacs4  17772  isacs3  17773
 Copyright terms: Public domain W3C validator