MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs4lem Structured version   Visualization version   GIF version

Theorem isacs4lem 18554
Description: In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs4lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs4lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 766 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐶 ∈ (Moore‘𝑋))
2 elpwi 4582 . . . . . . . 8 (𝑡 ∈ 𝒫 𝒫 𝑋𝑡 ⊆ 𝒫 𝑋)
32ad2antrl 728 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
4 acsdrscl.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
54mrcuni 17633 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ⊆ 𝒫 𝑋) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
61, 3, 5syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
74mrcf 17621 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
87ffnd 6707 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
98adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐹 Fn 𝒫 𝑋)
10 simpll 766 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝐶 ∈ (Moore‘𝑋))
11 simprl 770 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑥𝑦)
12 simprr 772 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑦𝑋)
1310, 4, 11, 12mrcssd 17636 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → (𝐹𝑥) ⊆ (𝐹𝑦))
14 simprr 772 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘𝑡) ∈ Dirset)
152ad2antrl 728 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
164fvexi 6890 . . . . . . . . . . . 12 𝐹 ∈ V
1716imaex 7910 . . . . . . . . . . 11 (𝐹𝑡) ∈ V
1817a1i 11 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ V)
199, 13, 14, 15, 18ipodrsima 18551 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
2019adantlr 715 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
21 fveq2 6876 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → (toInc‘𝑠) = (toInc‘(𝐹𝑡)))
2221eleq1d 2819 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘(𝐹𝑡)) ∈ Dirset))
23 unieq 4894 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → 𝑠 = (𝐹𝑡))
2423eleq1d 2819 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ( 𝑠𝐶 (𝐹𝑡) ∈ 𝐶))
2522, 24imbi12d 344 . . . . . . . . 9 (𝑠 = (𝐹𝑡) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶)))
26 simplr 768 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
27 imassrn 6058 . . . . . . . . . . . 12 (𝐹𝑡) ⊆ ran 𝐹
287frnd 6714 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝐶)
2927, 28sstrid 3970 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ⊆ 𝐶)
3017elpw 4579 . . . . . . . . . . 11 ((𝐹𝑡) ∈ 𝒫 𝐶 ↔ (𝐹𝑡) ⊆ 𝐶)
3129, 30sylibr 234 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ∈ 𝒫 𝐶)
3231ad2antrr 726 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝒫 𝐶)
3325, 26, 32rspcdva 3602 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶))
3420, 33mpd 15 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝐶)
354mrcid 17625 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑡) ∈ 𝐶) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
361, 34, 35syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
376, 36eqtrd 2770 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹𝑡))
3837exp32 420 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝑡 ∈ 𝒫 𝒫 𝑋 → ((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
3938ralrimiv 3131 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
4039ex 412 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
4140imdistani 568 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883  ran crn 5655  cima 5657   Fn wfn 6526  cfv 6531  Moorecmre 17594  mrClscmrc 17595  Dirsetcdrs 18305  toInccipo 18537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-tset 17290  df-ple 17291  df-ocomp 17292  df-mre 17598  df-mrc 17599  df-proset 18306  df-drs 18307  df-poset 18325  df-ipo 18538
This theorem is referenced by:  acsdrscl  18556  acsficl  18557  isacs5  18558  isacs4  18559  isacs3  18560
  Copyright terms: Public domain W3C validator