MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isacs4lem Structured version   Visualization version   GIF version

Theorem isacs4lem 18589
Description: In a closure system in which directed unions of closed sets are closed, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
isacs4lem ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Distinct variable groups:   𝐶,𝑠,𝑡   𝐹,𝑠,𝑡   𝑋,𝑠,𝑡

Proof of Theorem isacs4lem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 767 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐶 ∈ (Moore‘𝑋))
2 elpwi 4607 . . . . . . . 8 (𝑡 ∈ 𝒫 𝒫 𝑋𝑡 ⊆ 𝒫 𝑋)
32ad2antrl 728 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
4 acsdrscl.f . . . . . . . 8 𝐹 = (mrCls‘𝐶)
54mrcuni 17664 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ 𝑡 ⊆ 𝒫 𝑋) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
61, 3, 5syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹 (𝐹𝑡)))
74mrcf 17652 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → 𝐹:𝒫 𝑋𝐶)
87ffnd 6737 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → 𝐹 Fn 𝒫 𝑋)
98adantr 480 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝐹 Fn 𝒫 𝑋)
10 simpll 767 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝐶 ∈ (Moore‘𝑋))
11 simprl 771 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑥𝑦)
12 simprr 773 . . . . . . . . . . 11 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → 𝑦𝑋)
1310, 4, 11, 12mrcssd 17667 . . . . . . . . . 10 (((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) ∧ (𝑥𝑦𝑦𝑋)) → (𝐹𝑥) ⊆ (𝐹𝑦))
14 simprr 773 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘𝑡) ∈ Dirset)
152ad2antrl 728 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → 𝑡 ⊆ 𝒫 𝑋)
164fvexi 6920 . . . . . . . . . . . 12 𝐹 ∈ V
1716imaex 7936 . . . . . . . . . . 11 (𝐹𝑡) ∈ V
1817a1i 11 . . . . . . . . . 10 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ V)
199, 13, 14, 15, 18ipodrsima 18586 . . . . . . . . 9 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
2019adantlr 715 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (toInc‘(𝐹𝑡)) ∈ Dirset)
21 fveq2 6906 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → (toInc‘𝑠) = (toInc‘(𝐹𝑡)))
2221eleq1d 2826 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ((toInc‘𝑠) ∈ Dirset ↔ (toInc‘(𝐹𝑡)) ∈ Dirset))
23 unieq 4918 . . . . . . . . . . 11 (𝑠 = (𝐹𝑡) → 𝑠 = (𝐹𝑡))
2423eleq1d 2826 . . . . . . . . . 10 (𝑠 = (𝐹𝑡) → ( 𝑠𝐶 (𝐹𝑡) ∈ 𝐶))
2522, 24imbi12d 344 . . . . . . . . 9 (𝑠 = (𝐹𝑡) → (((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) ↔ ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶)))
26 simplr 769 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶))
27 imassrn 6089 . . . . . . . . . . . 12 (𝐹𝑡) ⊆ ran 𝐹
287frnd 6744 . . . . . . . . . . . 12 (𝐶 ∈ (Moore‘𝑋) → ran 𝐹𝐶)
2927, 28sstrid 3995 . . . . . . . . . . 11 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ⊆ 𝐶)
3017elpw 4604 . . . . . . . . . . 11 ((𝐹𝑡) ∈ 𝒫 𝐶 ↔ (𝐹𝑡) ⊆ 𝐶)
3129, 30sylibr 234 . . . . . . . . . 10 (𝐶 ∈ (Moore‘𝑋) → (𝐹𝑡) ∈ 𝒫 𝐶)
3231ad2antrr 726 . . . . . . . . 9 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝒫 𝐶)
3325, 26, 32rspcdva 3623 . . . . . . . 8 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → ((toInc‘(𝐹𝑡)) ∈ Dirset → (𝐹𝑡) ∈ 𝐶))
3420, 33mpd 15 . . . . . . 7 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹𝑡) ∈ 𝐶)
354mrcid 17656 . . . . . . 7 ((𝐶 ∈ (Moore‘𝑋) ∧ (𝐹𝑡) ∈ 𝐶) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
361, 34, 35syl2anc 584 . . . . . 6 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 (𝐹𝑡)) = (𝐹𝑡))
376, 36eqtrd 2777 . . . . 5 (((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) ∧ (𝑡 ∈ 𝒫 𝒫 𝑋 ∧ (toInc‘𝑡) ∈ Dirset)) → (𝐹 𝑡) = (𝐹𝑡))
3837exp32 420 . . . 4 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝑡 ∈ 𝒫 𝒫 𝑋 → ((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
3938ralrimiv 3145 . . 3 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
4039ex 412 . 2 (𝐶 ∈ (Moore‘𝑋) → (∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
4140imdistani 568 1 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  wss 3951  𝒫 cpw 4600   cuni 4907  ran crn 5686  cima 5688   Fn wfn 6556  cfv 6561  Moorecmre 17625  mrClscmrc 17626  Dirsetcdrs 18339  toInccipo 18572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-tset 17316  df-ple 17317  df-ocomp 17318  df-mre 17629  df-mrc 17630  df-proset 18340  df-drs 18341  df-poset 18359  df-ipo 18573
This theorem is referenced by:  acsdrscl  18591  acsficl  18592  isacs5  18593  isacs4  18594  isacs3  18595
  Copyright terms: Public domain W3C validator