Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubval Structured version   Visualization version   GIF version

Theorem mrsubval 35484
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝐹   𝑣,𝑅   𝑣,𝑋   𝑣,𝑇   𝑣,𝑉
Allowed substitution hints:   𝑆(𝑣)   𝐺(𝑣)

Proof of Theorem mrsubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . 4 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . 4 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . 4 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . 4 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubfval 35483 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98coeq2d 5809 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))
109oveq2d 7369 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
11 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → 𝑋𝑅)
12 ovexd 7388 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ V)
137, 10, 11, 12fvmptd 6941 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  wss 3905  ifcif 4478  cmpt 5176  ccom 5627  wf 6482  cfv 6486  (class class class)co 7353  ⟨“cs1 14520   Σg cgsu 17362  freeMndcfrmd 18739  mCNcmcn 35435  mVRcmvar 35436  mRExcmrex 35441  mRSubstcmrsub 35445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pm 8763  df-mrsub 35465
This theorem is referenced by:  mrsubcv  35485  mrsub0  35491  mrsubccat  35493
  Copyright terms: Public domain W3C validator