Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubval Structured version   Visualization version   GIF version

Theorem mrsubval 35531
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝐹   𝑣,𝑅   𝑣,𝑋   𝑣,𝑇   𝑣,𝑉
Allowed substitution hints:   𝑆(𝑣)   𝐺(𝑣)

Proof of Theorem mrsubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . 4 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . 4 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . 4 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . 4 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubfval 35530 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98coeq2d 5842 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))
109oveq2d 7421 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
11 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → 𝑋𝑅)
12 ovexd 7440 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ V)
137, 10, 11, 12fvmptd 6993 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  cun 3924  wss 3926  ifcif 4500  cmpt 5201  ccom 5658  wf 6527  cfv 6531  (class class class)co 7405  ⟨“cs1 14613   Σg cgsu 17454  freeMndcfrmd 18825  mCNcmcn 35482  mVRcmvar 35483  mRExcmrex 35488  mRSubstcmrsub 35492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-pm 8843  df-mrsub 35512
This theorem is referenced by:  mrsubcv  35532  mrsub0  35538  mrsubccat  35540
  Copyright terms: Public domain W3C validator