![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubval | Structured version Visualization version GIF version |
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mrsubffval.c | β’ πΆ = (mCNβπ) |
mrsubffval.v | β’ π = (mVRβπ) |
mrsubffval.r | β’ π = (mRExβπ) |
mrsubffval.s | β’ π = (mRSubstβπ) |
mrsubffval.g | β’ πΊ = (freeMndβ(πΆ βͺ π)) |
Ref | Expression |
---|---|
mrsubval | β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β ((πβπΉ)βπ) = (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mrsubffval.c | . . . 4 β’ πΆ = (mCNβπ) | |
2 | mrsubffval.v | . . . 4 β’ π = (mVRβπ) | |
3 | mrsubffval.r | . . . 4 β’ π = (mRExβπ) | |
4 | mrsubffval.s | . . . 4 β’ π = (mRSubstβπ) | |
5 | mrsubffval.g | . . . 4 β’ πΊ = (freeMndβ(πΆ βͺ π)) | |
6 | 1, 2, 3, 4, 5 | mrsubfval 34954 | . . 3 β’ ((πΉ:π΄βΆπ β§ π΄ β π) β (πβπΉ) = (π β π β¦ (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π)))) |
7 | 6 | 3adant3 1129 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β (πβπΉ) = (π β π β¦ (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π)))) |
8 | simpr 484 | . . . 4 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β§ π = π) β π = π) | |
9 | 8 | coeq2d 5852 | . . 3 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β§ π = π) β ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π) = ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π)) |
10 | 9 | oveq2d 7417 | . 2 β’ (((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β§ π = π) β (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π)) = (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π))) |
11 | simp3 1135 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β π β π ) | |
12 | ovexd 7436 | . 2 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π)) β V) | |
13 | 7, 10, 11, 12 | fvmptd 6995 | 1 β’ ((πΉ:π΄βΆπ β§ π΄ β π β§ π β π ) β ((πβπΉ)βπ) = (πΊ Ξ£g ((π£ β (πΆ βͺ π) β¦ if(π£ β π΄, (πΉβπ£), β¨βπ£ββ©)) β π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 Vcvv 3466 βͺ cun 3938 β wss 3940 ifcif 4520 β¦ cmpt 5221 β ccom 5670 βΆwf 6529 βcfv 6533 (class class class)co 7401 β¨βcs1 14541 Ξ£g cgsu 17384 freeMndcfrmd 18761 mCNcmcn 34906 mVRcmvar 34907 mRExcmrex 34912 mRSubstcmrsub 34916 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-pm 8818 df-mrsub 34936 |
This theorem is referenced by: mrsubcv 34956 mrsub0 34962 mrsubccat 34964 |
Copyright terms: Public domain | W3C validator |