| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubval | Structured version Visualization version GIF version | ||
| Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubffval.c | ⊢ 𝐶 = (mCN‘𝑇) |
| mrsubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mrsubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| mrsubffval.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| mrsubffval.g | ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) |
| Ref | Expression |
|---|---|
| mrsubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrsubffval.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
| 2 | mrsubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 3 | mrsubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 4 | mrsubffval.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 5 | mrsubffval.g | . . . 4 ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) | |
| 6 | 1, 2, 3, 4, 5 | mrsubfval 35513 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
| 7 | 6 | 3adant3 1133 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
| 9 | 8 | coeq2d 5873 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) = ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) |
| 10 | 9 | oveq2d 7447 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| 11 | simp3 1139 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → 𝑋 ∈ 𝑅) | |
| 12 | ovexd 7466 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ∈ V) | |
| 13 | 7, 10, 11, 12 | fvmptd 7023 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ⊆ wss 3951 ifcif 4525 ↦ cmpt 5225 ∘ ccom 5689 ⟶wf 6557 ‘cfv 6561 (class class class)co 7431 〈“cs1 14633 Σg cgsu 17485 freeMndcfrmd 18860 mCNcmcn 35465 mVRcmvar 35466 mRExcmrex 35471 mRSubstcmrsub 35475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pm 8869 df-mrsub 35495 |
| This theorem is referenced by: mrsubcv 35515 mrsub0 35521 mrsubccat 35523 |
| Copyright terms: Public domain | W3C validator |