Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubval Structured version   Visualization version   GIF version

Theorem mrsubval 34955
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐢 = (mCNβ€˜π‘‡)
mrsubffval.v 𝑉 = (mVRβ€˜π‘‡)
mrsubffval.r 𝑅 = (mRExβ€˜π‘‡)
mrsubffval.s 𝑆 = (mRSubstβ€˜π‘‡)
mrsubffval.g 𝐺 = (freeMndβ€˜(𝐢 βˆͺ 𝑉))
Assertion
Ref Expression
mrsubval ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) β†’ ((π‘†β€˜πΉ)β€˜π‘‹) = (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑋)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐢   𝑣,𝐹   𝑣,𝑅   𝑣,𝑋   𝑣,𝑇   𝑣,𝑉
Allowed substitution hints:   𝑆(𝑣)   𝐺(𝑣)

Proof of Theorem mrsubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . 4 𝐢 = (mCNβ€˜π‘‡)
2 mrsubffval.v . . . 4 𝑉 = (mVRβ€˜π‘‡)
3 mrsubffval.r . . . 4 𝑅 = (mRExβ€˜π‘‡)
4 mrsubffval.s . . . 4 𝑆 = (mRSubstβ€˜π‘‡)
5 mrsubffval.g . . . 4 𝐺 = (freeMndβ€˜(𝐢 βˆͺ 𝑉))
61, 2, 3, 4, 5mrsubfval 34954 . . 3 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉) β†’ (π‘†β€˜πΉ) = (𝑒 ∈ 𝑅 ↦ (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑒))))
763adant3 1129 . 2 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) β†’ (π‘†β€˜πΉ) = (𝑒 ∈ 𝑅 ↦ (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑒))))
8 simpr 484 . . . 4 (((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) β†’ 𝑒 = 𝑋)
98coeq2d 5852 . . 3 (((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) β†’ ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑒) = ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑋))
109oveq2d 7417 . 2 (((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) β†’ (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑒)) = (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑋)))
11 simp3 1135 . 2 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) β†’ 𝑋 ∈ 𝑅)
12 ovexd 7436 . 2 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) β†’ (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑋)) ∈ V)
137, 10, 11, 12fvmptd 6995 1 ((𝐹:π΄βŸΆπ‘… ∧ 𝐴 βŠ† 𝑉 ∧ 𝑋 ∈ 𝑅) β†’ ((π‘†β€˜πΉ)β€˜π‘‹) = (𝐺 Ξ£g ((𝑣 ∈ (𝐢 βˆͺ 𝑉) ↦ if(𝑣 ∈ 𝐴, (πΉβ€˜π‘£), βŸ¨β€œπ‘£β€βŸ©)) ∘ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466   βˆͺ cun 3938   βŠ† wss 3940  ifcif 4520   ↦ cmpt 5221   ∘ ccom 5670  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401  βŸ¨β€œcs1 14541   Ξ£g cgsu 17384  freeMndcfrmd 18761  mCNcmcn 34906  mVRcmvar 34907  mRExcmrex 34912  mRSubstcmrsub 34916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-pm 8818  df-mrsub 34936
This theorem is referenced by:  mrsubcv  34956  mrsub0  34962  mrsubccat  34964
  Copyright terms: Public domain W3C validator