Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubval Structured version   Visualization version   GIF version

Theorem mrsubval 35576
Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubffval.c 𝐶 = (mCN‘𝑇)
mrsubffval.v 𝑉 = (mVR‘𝑇)
mrsubffval.r 𝑅 = (mREx‘𝑇)
mrsubffval.s 𝑆 = (mRSubst‘𝑇)
mrsubffval.g 𝐺 = (freeMnd‘(𝐶𝑉))
Assertion
Ref Expression
mrsubval ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐶   𝑣,𝐹   𝑣,𝑅   𝑣,𝑋   𝑣,𝑇   𝑣,𝑉
Allowed substitution hints:   𝑆(𝑣)   𝐺(𝑣)

Proof of Theorem mrsubval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 mrsubffval.c . . . 4 𝐶 = (mCN‘𝑇)
2 mrsubffval.v . . . 4 𝑉 = (mVR‘𝑇)
3 mrsubffval.r . . . 4 𝑅 = (mREx‘𝑇)
4 mrsubffval.s . . . 4 𝑆 = (mRSubst‘𝑇)
5 mrsubffval.g . . . 4 𝐺 = (freeMnd‘(𝐶𝑉))
61, 2, 3, 4, 5mrsubfval 35575 . . 3 ((𝐹:𝐴𝑅𝐴𝑉) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
763adant3 1132 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝑆𝐹) = (𝑒𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒))))
8 simpr 484 . . . 4 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋)
98coeq2d 5808 . . 3 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒) = ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋))
109oveq2d 7370 . 2 (((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) ∧ 𝑒 = 𝑋) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
11 simp3 1138 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → 𝑋𝑅)
12 ovexd 7389 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)) ∈ V)
137, 10, 11, 12fvmptd 6944 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝑅) → ((𝑆𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶𝑉) ↦ if(𝑣𝐴, (𝐹𝑣), ⟨“𝑣”⟩)) ∘ 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  wss 3898  ifcif 4476  cmpt 5176  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354  ⟨“cs1 14507   Σg cgsu 17348  freeMndcfrmd 18759  mCNcmcn 35527  mVRcmvar 35528  mRExcmrex 35533  mRSubstcmrsub 35537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-pm 8761  df-mrsub 35557
This theorem is referenced by:  mrsubcv  35577  mrsub0  35583  mrsubccat  35585
  Copyright terms: Public domain W3C validator