| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mrsubval | Structured version Visualization version GIF version | ||
| Description: The substitution of some variables for expressions in a raw expression. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mrsubffval.c | ⊢ 𝐶 = (mCN‘𝑇) |
| mrsubffval.v | ⊢ 𝑉 = (mVR‘𝑇) |
| mrsubffval.r | ⊢ 𝑅 = (mREx‘𝑇) |
| mrsubffval.s | ⊢ 𝑆 = (mRSubst‘𝑇) |
| mrsubffval.g | ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) |
| Ref | Expression |
|---|---|
| mrsubval | ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrsubffval.c | . . . 4 ⊢ 𝐶 = (mCN‘𝑇) | |
| 2 | mrsubffval.v | . . . 4 ⊢ 𝑉 = (mVR‘𝑇) | |
| 3 | mrsubffval.r | . . . 4 ⊢ 𝑅 = (mREx‘𝑇) | |
| 4 | mrsubffval.s | . . . 4 ⊢ 𝑆 = (mRSubst‘𝑇) | |
| 5 | mrsubffval.g | . . . 4 ⊢ 𝐺 = (freeMnd‘(𝐶 ∪ 𝑉)) | |
| 6 | 1, 2, 3, 4, 5 | mrsubfval 35502 | . . 3 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
| 7 | 6 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → (𝑆‘𝐹) = (𝑒 ∈ 𝑅 ↦ (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)))) |
| 8 | simpr 484 | . . . 4 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → 𝑒 = 𝑋) | |
| 9 | 8 | coeq2d 5829 | . . 3 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒) = ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) |
| 10 | 9 | oveq2d 7406 | . 2 ⊢ (((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) ∧ 𝑒 = 𝑋) → (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑒)) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| 11 | simp3 1138 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → 𝑋 ∈ 𝑅) | |
| 12 | ovexd 7425 | . 2 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋)) ∈ V) | |
| 13 | 7, 10, 11, 12 | fvmptd 6978 | 1 ⊢ ((𝐹:𝐴⟶𝑅 ∧ 𝐴 ⊆ 𝑉 ∧ 𝑋 ∈ 𝑅) → ((𝑆‘𝐹)‘𝑋) = (𝐺 Σg ((𝑣 ∈ (𝐶 ∪ 𝑉) ↦ if(𝑣 ∈ 𝐴, (𝐹‘𝑣), 〈“𝑣”〉)) ∘ 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ifcif 4491 ↦ cmpt 5191 ∘ ccom 5645 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 〈“cs1 14567 Σg cgsu 17410 freeMndcfrmd 18781 mCNcmcn 35454 mVRcmvar 35455 mRExcmrex 35460 mRSubstcmrsub 35464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-mrsub 35484 |
| This theorem is referenced by: mrsubcv 35504 mrsub0 35510 mrsubccat 35512 |
| Copyright terms: Public domain | W3C validator |