Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 10863 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 · cmul 10782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 10841 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mulcomli 10890 divmul13i 11641 8th4div3 12098 numma2c 12387 nummul2c 12391 9t11e99 12471 binom2i 13831 fac3 13897 tanval2 15745 pockthi 16511 mod2xnegi 16675 decexp2 16679 decsplit1 16686 decsplit 16687 83prm 16727 dvsincos 25025 sincosq4sgn 25538 2logb9irrALT 25828 ang180lem3 25841 mcubic 25877 cubic2 25878 log2ublem2 25977 log2ublem3 25978 log2ub 25979 basellem8 26117 ppiub 26232 chtub 26240 bposlem8 26319 2lgsoddprmlem2 26437 2lgsoddprmlem3d 26441 ax5seglem7 27181 ex-ind-dvds 28701 ipdirilem 29067 siilem1 29089 bcseqi 29358 h1de2i 29791 dpmul10 31046 dpmul4 31065 signswch 32415 hgt750lem 32506 hgt750lem2 32507 problem4 33501 problem5 33502 quad3 33503 mulcomnni 39903 lcmineqlem23 39966 3lexlogpow5ineq1 39969 arearect 40934 areaquad 40935 wallispilem4 43472 dirkercncflem1 43507 fourierswlem 43634 257prm 44874 fmtno4prmfac 44885 5tcu2e40 44928 41prothprm 44932 tgoldbachlt 45129 zlmodzxzequap 45701 |
Copyright terms: Public domain | W3C validator |