| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11089 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11067 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11118 divmul13i 11879 8th4div3 12338 numma2c 12631 nummul2c 12635 9t11e99 12715 binom2i 14116 fac3 14184 tanval2 16039 pockthi 16816 mod2xnegi 16980 decsplit1 16990 decsplit 16991 83prm 17031 dvsincos 25910 sincosq4sgn 26435 2logb9irrALT 26733 ang180lem3 26746 mcubic 26782 cubic2 26783 log2ublem2 26882 log2ublem3 26883 log2ub 26884 basellem8 27023 ppiub 27140 chtub 27148 bposlem8 27227 2lgsoddprmlem2 27345 2lgsoddprmlem3d 27349 ax5seglem7 28911 ex-ind-dvds 30436 ipdirilem 30804 siilem1 30826 bcseqi 31095 h1de2i 31528 dpmul10 32870 dpmul4 32889 signswch 34569 hgt750lem 34659 hgt750lem2 34660 problem4 35700 problem5 35701 quad3 35702 mulcomnni 42019 lcmineqlem23 42083 3lexlogpow5ineq1 42086 arearect 43247 areaquad 43248 wallispilem4 46105 dirkercncflem1 46140 fourierswlem 46267 257prm 47591 fmtno4prmfac 47602 5tcu2e40 47645 41prothprm 47649 tgoldbachlt 47846 zlmodzxzequap 48530 |
| Copyright terms: Public domain | W3C validator |