| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11213 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 · cmul 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11242 divmul13i 12000 8th4div3 12459 numma2c 12752 nummul2c 12756 9t11e99 12836 binom2i 14228 fac3 14296 tanval2 16149 pockthi 16925 mod2xnegi 17089 decsplit1 17099 decsplit 17100 83prm 17140 dvsincos 25935 sincosq4sgn 26460 2logb9irrALT 26758 ang180lem3 26771 mcubic 26807 cubic2 26808 log2ublem2 26907 log2ublem3 26908 log2ub 26909 basellem8 27048 ppiub 27165 chtub 27173 bposlem8 27252 2lgsoddprmlem2 27370 2lgsoddprmlem3d 27374 ax5seglem7 28860 ex-ind-dvds 30388 ipdirilem 30756 siilem1 30778 bcseqi 31047 h1de2i 31480 dpmul10 32815 dpmul4 32834 signswch 34539 hgt750lem 34629 hgt750lem2 34630 problem4 35636 problem5 35637 quad3 35638 mulcomnni 41946 lcmineqlem23 42010 3lexlogpow5ineq1 42013 arearect 43186 areaquad 43187 wallispilem4 46045 dirkercncflem1 46080 fourierswlem 46207 257prm 47523 fmtno4prmfac 47534 5tcu2e40 47577 41prothprm 47581 tgoldbachlt 47778 zlmodzxzequap 48423 |
| Copyright terms: Public domain | W3C validator |