![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 10310 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 684 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 (class class class)co 6878 ℂcc 10222 · cmul 10229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 10288 |
This theorem depends on definitions: df-bi 199 df-an 386 |
This theorem is referenced by: mulcomli 10338 divmul13i 11078 8th4div3 11540 numma2c 11830 nummul2c 11834 9t11e99 11915 binom2i 13228 fac3 13320 tanval2 15199 pockthi 15944 mod2xnegi 16108 decexp2 16112 decsplit1 16119 decsplit 16120 83prm 16157 dvsincos 24085 sincosq4sgn 24595 2logb9irrALT 24880 ang180lem3 24893 mcubic 24926 cubic2 24927 log2ublem2 25026 log2ublem3 25027 log2ub 25028 basellem8 25166 ppiub 25281 chtub 25289 bposlem8 25368 2lgsoddprmlem2 25486 2lgsoddprmlem3d 25490 ax5seglem7 26172 ex-ind-dvds 27846 ipdirilem 28209 siilem1 28231 bcseqi 28502 h1de2i 28937 dpmul10 30119 dpmul4 30138 signswch 31156 hgt750lem 31249 hgt750lem2 31250 problem4 32077 problem5 32078 quad3 32079 arearect 38585 areaquad 38586 wallispilem4 41028 dirkercncflem1 41063 fourierswlem 41190 257prm 42255 fmtno4prmfac 42266 5tcu2e40 42314 41prothprm 42318 tgoldbachlt 42486 zlmodzxzequap 43087 |
Copyright terms: Public domain | W3C validator |