| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11099 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11128 divmul13i 11889 8th4div3 12348 numma2c 12640 nummul2c 12644 9t11e99 12724 binom2i 14121 fac3 14189 tanval2 16044 pockthi 16821 mod2xnegi 16985 decsplit1 16995 decsplit 16996 83prm 17036 dvsincos 25913 sincosq4sgn 26438 2logb9irrALT 26736 ang180lem3 26749 mcubic 26785 cubic2 26786 log2ublem2 26885 log2ublem3 26886 log2ub 26887 basellem8 27026 ppiub 27143 chtub 27151 bposlem8 27230 2lgsoddprmlem2 27348 2lgsoddprmlem3d 27352 ax5seglem7 28915 ex-ind-dvds 30443 ipdirilem 30811 siilem1 30833 bcseqi 31102 h1de2i 31535 dpmul10 32882 dpmul4 32901 signswch 34595 hgt750lem 34685 hgt750lem2 34686 problem4 35733 problem5 35734 quad3 35735 mulcomnni 42100 lcmineqlem23 42164 3lexlogpow5ineq1 42167 arearect 43332 areaquad 43333 wallispilem4 46190 dirkercncflem1 46225 fourierswlem 46352 257prm 47685 fmtno4prmfac 47696 5tcu2e40 47739 41prothprm 47743 tgoldbachlt 47940 zlmodzxzequap 48624 |
| Copyright terms: Public domain | W3C validator |