| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11114 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11143 divmul13i 11903 8th4div3 12362 numma2c 12655 nummul2c 12659 9t11e99 12739 binom2i 14137 fac3 14205 tanval2 16060 pockthi 16837 mod2xnegi 17001 decsplit1 17011 decsplit 17012 83prm 17052 dvsincos 25901 sincosq4sgn 26426 2logb9irrALT 26724 ang180lem3 26737 mcubic 26773 cubic2 26774 log2ublem2 26873 log2ublem3 26874 log2ub 26875 basellem8 27014 ppiub 27131 chtub 27139 bposlem8 27218 2lgsoddprmlem2 27336 2lgsoddprmlem3d 27340 ax5seglem7 28898 ex-ind-dvds 30423 ipdirilem 30791 siilem1 30813 bcseqi 31082 h1de2i 31515 dpmul10 32848 dpmul4 32867 signswch 34528 hgt750lem 34618 hgt750lem2 34619 problem4 35640 problem5 35641 quad3 35642 mulcomnni 41960 lcmineqlem23 42024 3lexlogpow5ineq1 42027 arearect 43188 areaquad 43189 wallispilem4 46050 dirkercncflem1 46085 fourierswlem 46212 257prm 47546 fmtno4prmfac 47557 5tcu2e40 47600 41prothprm 47604 tgoldbachlt 47801 zlmodzxzequap 48485 |
| Copyright terms: Public domain | W3C validator |