![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 11191 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7401 ℂcc 11103 · cmul 11110 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mulcomli 11219 divmul13i 11971 8th4div3 12428 numma2c 12719 nummul2c 12723 9t11e99 12803 binom2i 14172 fac3 14236 tanval2 16072 pockthi 16838 mod2xnegi 17002 decexp2 17006 decsplit1 17013 decsplit 17014 83prm 17054 dvsincos 25834 sincosq4sgn 26352 2logb9irrALT 26645 ang180lem3 26658 mcubic 26694 cubic2 26695 log2ublem2 26794 log2ublem3 26795 log2ub 26796 basellem8 26935 ppiub 27052 chtub 27060 bposlem8 27139 2lgsoddprmlem2 27257 2lgsoddprmlem3d 27261 ax5seglem7 28628 ex-ind-dvds 30149 ipdirilem 30517 siilem1 30539 bcseqi 30808 h1de2i 31241 dpmul10 32494 dpmul4 32513 signswch 34027 hgt750lem 34118 hgt750lem2 34119 problem4 35108 problem5 35109 quad3 35110 mulcomnni 41312 lcmineqlem23 41375 3lexlogpow5ineq1 41378 arearect 42419 areaquad 42420 wallispilem4 45235 dirkercncflem1 45270 fourierswlem 45397 257prm 46680 fmtno4prmfac 46691 5tcu2e40 46734 41prothprm 46738 tgoldbachlt 46935 zlmodzxzequap 47334 |
Copyright terms: Public domain | W3C validator |