Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 10702 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2113 (class class class)co 7171 ℂcc 10614 · cmul 10621 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 10680 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: mulcomli 10729 divmul13i 11480 8th4div3 11937 numma2c 12226 nummul2c 12230 9t11e99 12310 binom2i 13667 fac3 13733 tanval2 15579 pockthi 16344 mod2xnegi 16508 decexp2 16512 decsplit1 16519 decsplit 16520 83prm 16560 dvsincos 24733 sincosq4sgn 25246 2logb9irrALT 25536 ang180lem3 25549 mcubic 25585 cubic2 25586 log2ublem2 25685 log2ublem3 25686 log2ub 25687 basellem8 25825 ppiub 25940 chtub 25948 bposlem8 26027 2lgsoddprmlem2 26145 2lgsoddprmlem3d 26149 ax5seglem7 26881 ex-ind-dvds 28398 ipdirilem 28764 siilem1 28786 bcseqi 29055 h1de2i 29488 dpmul10 30744 dpmul4 30763 signswch 32110 hgt750lem 32201 hgt750lem2 32202 problem4 33197 problem5 33198 quad3 33199 mulcomnni 39613 lcmineqlem23 39676 3lexlogpow5ineq1 39679 arearect 40610 areaquad 40611 wallispilem4 43143 dirkercncflem1 43178 fourierswlem 43305 257prm 44539 fmtno4prmfac 44550 5tcu2e40 44593 41prothprm 44597 tgoldbachlt 44794 zlmodzxzequap 45366 |
Copyright terms: Public domain | W3C validator |