![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 11238 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11216 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mulcomli 11267 divmul13i 12025 8th4div3 12483 numma2c 12776 nummul2c 12780 9t11e99 12860 binom2i 14247 fac3 14315 tanval2 16165 pockthi 16940 mod2xnegi 17104 decexp2 17108 decsplit1 17115 decsplit 17116 83prm 17156 dvsincos 26033 sincosq4sgn 26557 2logb9irrALT 26855 ang180lem3 26868 mcubic 26904 cubic2 26905 log2ublem2 27004 log2ublem3 27005 log2ub 27006 basellem8 27145 ppiub 27262 chtub 27270 bposlem8 27349 2lgsoddprmlem2 27467 2lgsoddprmlem3d 27471 ax5seglem7 28964 ex-ind-dvds 30489 ipdirilem 30857 siilem1 30879 bcseqi 31148 h1de2i 31581 dpmul10 32861 dpmul4 32880 signswch 34554 hgt750lem 34644 hgt750lem2 34645 problem4 35652 problem5 35653 quad3 35654 mulcomnni 41968 lcmineqlem23 42032 3lexlogpow5ineq1 42035 arearect 43203 areaquad 43204 wallispilem4 46023 dirkercncflem1 46058 fourierswlem 46185 257prm 47485 fmtno4prmfac 47496 5tcu2e40 47539 41prothprm 47543 tgoldbachlt 47740 zlmodzxzequap 48344 |
Copyright terms: Public domain | W3C validator |