| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11154 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11183 divmul13i 11943 8th4div3 12402 numma2c 12695 nummul2c 12699 9t11e99 12779 binom2i 14177 fac3 14245 tanval2 16101 pockthi 16878 mod2xnegi 17042 decsplit1 17052 decsplit 17053 83prm 17093 dvsincos 25885 sincosq4sgn 26410 2logb9irrALT 26708 ang180lem3 26721 mcubic 26757 cubic2 26758 log2ublem2 26857 log2ublem3 26858 log2ub 26859 basellem8 26998 ppiub 27115 chtub 27123 bposlem8 27202 2lgsoddprmlem2 27320 2lgsoddprmlem3d 27324 ax5seglem7 28862 ex-ind-dvds 30390 ipdirilem 30758 siilem1 30780 bcseqi 31049 h1de2i 31482 dpmul10 32815 dpmul4 32834 signswch 34552 hgt750lem 34642 hgt750lem2 34643 problem4 35655 problem5 35656 quad3 35657 mulcomnni 41975 lcmineqlem23 42039 3lexlogpow5ineq1 42042 arearect 43204 areaquad 43205 wallispilem4 46066 dirkercncflem1 46101 fourierswlem 46228 257prm 47562 fmtno4prmfac 47573 5tcu2e40 47616 41prothprm 47620 tgoldbachlt 47817 zlmodzxzequap 48488 |
| Copyright terms: Public domain | W3C validator |