| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | mulcom 11161 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11139 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: mulcomli 11190 divmul13i 11950 8th4div3 12409 numma2c 12702 nummul2c 12706 9t11e99 12786 binom2i 14184 fac3 14252 tanval2 16108 pockthi 16885 mod2xnegi 17049 decsplit1 17059 decsplit 17060 83prm 17100 dvsincos 25892 sincosq4sgn 26417 2logb9irrALT 26715 ang180lem3 26728 mcubic 26764 cubic2 26765 log2ublem2 26864 log2ublem3 26865 log2ub 26866 basellem8 27005 ppiub 27122 chtub 27130 bposlem8 27209 2lgsoddprmlem2 27327 2lgsoddprmlem3d 27331 ax5seglem7 28869 ex-ind-dvds 30397 ipdirilem 30765 siilem1 30787 bcseqi 31056 h1de2i 31489 dpmul10 32822 dpmul4 32841 signswch 34559 hgt750lem 34649 hgt750lem2 34650 problem4 35662 problem5 35663 quad3 35664 mulcomnni 41982 lcmineqlem23 42046 3lexlogpow5ineq1 42049 arearect 43211 areaquad 43212 wallispilem4 46073 dirkercncflem1 46108 fourierswlem 46235 257prm 47566 fmtno4prmfac 47577 5tcu2e40 47620 41prothprm 47624 tgoldbachlt 47821 zlmodzxzequap 48492 |
| Copyright terms: Public domain | W3C validator |