![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 11270 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11248 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: mulcomli 11299 divmul13i 12055 8th4div3 12513 numma2c 12804 nummul2c 12808 9t11e99 12888 binom2i 14261 fac3 14329 tanval2 16181 pockthi 16954 mod2xnegi 17118 decexp2 17122 decsplit1 17129 decsplit 17130 83prm 17170 dvsincos 26039 sincosq4sgn 26561 2logb9irrALT 26859 ang180lem3 26872 mcubic 26908 cubic2 26909 log2ublem2 27008 log2ublem3 27009 log2ub 27010 basellem8 27149 ppiub 27266 chtub 27274 bposlem8 27353 2lgsoddprmlem2 27471 2lgsoddprmlem3d 27475 ax5seglem7 28968 ex-ind-dvds 30493 ipdirilem 30861 siilem1 30883 bcseqi 31152 h1de2i 31585 dpmul10 32859 dpmul4 32878 signswch 34538 hgt750lem 34628 hgt750lem2 34629 problem4 35636 problem5 35637 quad3 35638 mulcomnni 41944 lcmineqlem23 42008 3lexlogpow5ineq1 42011 arearect 43176 areaquad 43177 wallispilem4 45989 dirkercncflem1 46024 fourierswlem 46151 257prm 47435 fmtno4prmfac 47446 5tcu2e40 47489 41prothprm 47493 tgoldbachlt 47690 zlmodzxzequap 48228 |
Copyright terms: Public domain | W3C validator |