| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11241 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2758 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 · cmul 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 ax-mulcom 11191 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: divcan1i 11983 mvllmuli 12072 recgt0ii 12146 halfthird 12460 nummul2c 12756 5recm6rec 12849 sq4e2t8 14215 cos2bnd 16204 prmo3 17059 dec5nprm 17084 karatsuba 17101 2exp6 17104 2exp8 17106 2exp11 17107 2exp16 17108 7prm 17128 13prm 17133 17prm 17134 19prm 17135 23prm 17136 43prm 17139 83prm 17140 139prm 17141 163prm 17142 317prm 17143 631prm 17144 1259lem1 17148 1259lem2 17149 1259lem3 17150 1259lem4 17151 1259lem5 17152 1259prm 17153 2503lem1 17154 2503lem2 17155 2503lem3 17156 2503prm 17157 4001lem1 17158 4001lem2 17159 4001lem3 17160 4001lem4 17161 4001prm 17162 pcoass 24973 efif1olem2 26502 mcubic 26807 quart1lem 26815 quart1 26816 quartlem1 26817 tanatan 26879 log2ublem3 26908 log2ub 26909 cht3 27133 bclbnd 27241 bpos1lem 27243 bposlem4 27248 bposlem5 27249 bposlem8 27252 2lgslem3a 27357 2lgsoddprmlem3c 27373 2lgsoddprmlem3d 27374 ex-exp 30377 ex-fac 30378 ex-prmo 30386 ipasslem10 30766 siii 30780 normlem3 31039 bcsiALT 31106 dpmul1000 32819 hgt750lem2 34630 12lcm5e60 41967 60lcm7e420 41969 420lcm8e840 41970 3exp7 42012 3lexlogpow5ineq1 42013 3lexlogpow2ineq2 42018 3lexlogpow5ineq5 42019 aks4d1p1 42035 4t5e20 42288 235t711 42301 ex-decpmul 42302 0tie0 42311 3cubeslem3l 42656 3cubeslem3r 42657 sqrtcval2 43613 resqrtvalex 43616 inductionexd 44126 fouriersw 46208 1t10e1p1e11 47287 fmtno5lem1 47515 fmtno5lem2 47516 257prm 47523 fmtno4prmfac 47534 fmtno4nprmfac193 47536 fmtno5faclem2 47542 139prmALT 47558 127prm 47561 mod42tp1mod8 47564 3exp4mod41 47578 41prothprmlem2 47580 2exp340mod341 47695 8exp8mod9 47698 gpg5order 48012 |
| Copyright terms: Public domain | W3C validator |