![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
Ref | Expression |
---|---|
mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | mulcomi 11266 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2762 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 ax-mulcom 11216 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 |
This theorem is referenced by: divcan1i 12008 mvllmuli 12097 recgt0ii 12171 nummul2c 12780 halfthird 12873 5recm6rec 12874 sq4e2t8 14234 cos2bnd 16220 prmo3 17074 dec5nprm 17099 decexp2 17108 karatsuba 17117 2exp6 17120 2exp8 17122 2exp11 17123 2exp16 17124 7prm 17144 13prm 17149 17prm 17150 19prm 17151 23prm 17152 43prm 17155 83prm 17156 139prm 17157 163prm 17158 317prm 17159 631prm 17160 1259lem1 17164 1259lem2 17165 1259lem3 17166 1259lem4 17167 1259lem5 17168 1259prm 17169 2503lem1 17170 2503lem2 17171 2503lem3 17172 2503prm 17173 4001lem1 17174 4001lem2 17175 4001lem3 17176 4001lem4 17177 4001prm 17178 pcoass 25070 efif1olem2 26599 mcubic 26904 quart1lem 26912 quart1 26913 quartlem1 26914 tanatan 26976 log2ublem3 27005 log2ub 27006 cht3 27230 bclbnd 27338 bpos1lem 27340 bposlem4 27345 bposlem5 27346 bposlem8 27349 2lgslem3a 27454 2lgsoddprmlem3c 27470 2lgsoddprmlem3d 27471 ex-exp 30478 ex-fac 30479 ex-prmo 30487 ipasslem10 30867 siii 30881 normlem3 31140 bcsiALT 31207 dpmul1000 32865 hgt750lem2 34645 12lcm5e60 41989 60lcm7e420 41991 420lcm8e840 41992 3exp7 42034 3lexlogpow5ineq1 42035 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1p1 42057 4t5e20 42304 235t711 42317 ex-decpmul 42318 0tie0 42328 3cubeslem3l 42673 3cubeslem3r 42674 sqrtcval2 43631 resqrtvalex 43634 inductionexd 44144 fouriersw 46186 1t10e1p1e11 47259 fmtno5lem1 47477 fmtno5lem2 47478 257prm 47485 fmtno4prmfac 47496 fmtno4nprmfac193 47498 fmtno5faclem2 47504 139prmALT 47520 127prm 47523 mod42tp1mod8 47526 3exp4mod41 47540 41prothprmlem2 47542 2exp340mod341 47657 8exp8mod9 47660 gpg5order 47948 |
Copyright terms: Public domain | W3C validator |