Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
Ref | Expression |
---|---|
mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | mulcomi 10889 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2767 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ∈ wcel 2112 (class class class)co 7252 ℂcc 10775 · cmul 10782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-9 2122 ax-ext 2710 ax-mulcom 10841 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-cleq 2731 |
This theorem is referenced by: divcan1i 11624 mvllmuli 11713 recgt0ii 11786 nummul2c 12391 halfthird 12484 5recm6rec 12485 sq4e2t8 13819 cos2bnd 15800 prmo3 16645 dec5nprm 16670 decexp2 16679 karatsuba 16688 2exp6 16691 2exp8 16693 2exp11 16694 2exp16 16695 7prm 16715 13prm 16720 17prm 16721 19prm 16722 23prm 16723 43prm 16726 83prm 16727 139prm 16728 163prm 16729 317prm 16730 631prm 16731 1259lem1 16735 1259lem2 16736 1259lem3 16737 1259lem4 16738 1259lem5 16739 1259prm 16740 2503lem1 16741 2503lem2 16742 2503lem3 16743 2503prm 16744 4001lem1 16745 4001lem2 16746 4001lem3 16747 4001lem4 16748 4001prm 16749 pcoass 24068 efif1olem2 25579 mcubic 25877 quart1lem 25885 quart1 25886 quartlem1 25887 tanatan 25949 log2ublem3 25978 log2ub 25979 cht3 26202 bclbnd 26308 bpos1lem 26310 bposlem4 26315 bposlem5 26316 bposlem8 26319 2lgslem3a 26424 2lgsoddprmlem3c 26440 2lgsoddprmlem3d 26441 ex-exp 28690 ex-fac 28691 ex-prmo 28699 ipasslem10 29077 siii 29091 normlem3 29350 bcsiALT 29417 dpmul1000 31050 hgt750lem2 32507 12lcm5e60 39923 60lcm7e420 39925 420lcm8e840 39926 3exp7 39968 3lexlogpow5ineq1 39969 3lexlogpow2ineq2 39974 3lexlogpow5ineq5 39975 aks4d1p1 39990 235t711 40212 ex-decpmul 40213 3cubeslem3l 40396 3cubeslem3r 40397 sqrtcval2 41111 resqrtvalex 41114 inductionexd 41627 fouriersw 43635 1t10e1p1e11 44663 fmtno5lem1 44866 fmtno5lem2 44867 257prm 44874 fmtno4prmfac 44885 fmtno4nprmfac193 44887 fmtno5faclem2 44893 139prmALT 44909 127prm 44912 mod42tp1mod8 44915 3exp4mod41 44929 41prothprmlem2 44931 2exp340mod341 45046 8exp8mod9 45049 |
Copyright terms: Public domain | W3C validator |