| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11182 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2752 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 ax-mulcom 11132 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: divcan1i 11926 mvllmuli 12015 recgt0ii 12089 halfthird 12403 nummul2c 12699 5recm6rec 12792 sq4e2t8 14164 cos2bnd 16156 prmo3 17012 dec5nprm 17037 karatsuba 17054 2exp6 17057 2exp8 17059 2exp11 17060 2exp16 17061 7prm 17081 13prm 17086 17prm 17087 19prm 17088 23prm 17089 43prm 17092 83prm 17093 139prm 17094 163prm 17095 317prm 17096 631prm 17097 1259lem1 17101 1259lem2 17102 1259lem3 17103 1259lem4 17104 1259lem5 17105 1259prm 17106 2503lem1 17107 2503lem2 17108 2503lem3 17109 2503prm 17110 4001lem1 17111 4001lem2 17112 4001lem3 17113 4001lem4 17114 4001prm 17115 pcoass 24924 efif1olem2 26452 mcubic 26757 quart1lem 26765 quart1 26766 quartlem1 26767 tanatan 26829 log2ublem3 26858 log2ub 26859 cht3 27083 bclbnd 27191 bpos1lem 27193 bposlem4 27198 bposlem5 27199 bposlem8 27202 2lgslem3a 27307 2lgsoddprmlem3c 27323 2lgsoddprmlem3d 27324 ex-exp 30379 ex-fac 30380 ex-prmo 30388 ipasslem10 30768 siii 30782 normlem3 31041 bcsiALT 31108 dpmul1000 32819 hgt750lem2 34643 12lcm5e60 41996 60lcm7e420 41998 420lcm8e840 41999 3exp7 42041 3lexlogpow5ineq1 42042 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 aks4d1p1 42064 4t5e20 42279 235t711 42293 ex-decpmul 42294 0tie0 42303 3cubeslem3l 42674 3cubeslem3r 42675 sqrtcval2 43631 resqrtvalex 43634 inductionexd 44144 fouriersw 46229 1t10e1p1e11 47311 fmtno5lem1 47554 fmtno5lem2 47555 257prm 47562 fmtno4prmfac 47573 fmtno4nprmfac193 47575 fmtno5faclem2 47581 139prmALT 47597 127prm 47600 mod42tp1mod8 47603 3exp4mod41 47617 41prothprmlem2 47619 2exp340mod341 47734 8exp8mod9 47737 gpg5order 48051 |
| Copyright terms: Public domain | W3C validator |