| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11189 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2753 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 ax-mulcom 11139 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: divcan1i 11933 mvllmuli 12022 recgt0ii 12096 halfthird 12410 nummul2c 12706 5recm6rec 12799 sq4e2t8 14171 cos2bnd 16163 prmo3 17019 dec5nprm 17044 karatsuba 17061 2exp6 17064 2exp8 17066 2exp11 17067 2exp16 17068 7prm 17088 13prm 17093 17prm 17094 19prm 17095 23prm 17096 43prm 17099 83prm 17100 139prm 17101 163prm 17102 317prm 17103 631prm 17104 1259lem1 17108 1259lem2 17109 1259lem3 17110 1259lem4 17111 1259lem5 17112 1259prm 17113 2503lem1 17114 2503lem2 17115 2503lem3 17116 2503prm 17117 4001lem1 17118 4001lem2 17119 4001lem3 17120 4001lem4 17121 4001prm 17122 pcoass 24931 efif1olem2 26459 mcubic 26764 quart1lem 26772 quart1 26773 quartlem1 26774 tanatan 26836 log2ublem3 26865 log2ub 26866 cht3 27090 bclbnd 27198 bpos1lem 27200 bposlem4 27205 bposlem5 27206 bposlem8 27209 2lgslem3a 27314 2lgsoddprmlem3c 27330 2lgsoddprmlem3d 27331 ex-exp 30386 ex-fac 30387 ex-prmo 30395 ipasslem10 30775 siii 30789 normlem3 31048 bcsiALT 31115 dpmul1000 32826 hgt750lem2 34650 12lcm5e60 42003 60lcm7e420 42005 420lcm8e840 42006 3exp7 42048 3lexlogpow5ineq1 42049 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 aks4d1p1 42071 4t5e20 42286 235t711 42300 ex-decpmul 42301 0tie0 42310 3cubeslem3l 42681 3cubeslem3r 42682 sqrtcval2 43638 resqrtvalex 43641 inductionexd 44151 fouriersw 46236 1t10e1p1e11 47315 fmtno5lem1 47558 fmtno5lem2 47559 257prm 47566 fmtno4prmfac 47577 fmtno4nprmfac193 47579 fmtno5faclem2 47585 139prmALT 47601 127prm 47604 mod42tp1mod8 47607 3exp4mod41 47621 41prothprmlem2 47623 2exp340mod341 47738 8exp8mod9 47741 gpg5order 48055 |
| Copyright terms: Public domain | W3C validator |