| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11117 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2754 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11001 · cmul 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 ax-mulcom 11067 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: divcan1i 11862 mvllmuli 11951 recgt0ii 12025 halfthird 12339 nummul2c 12635 5recm6rec 12728 sq4e2t8 14103 cos2bnd 16094 prmo3 16950 dec5nprm 16975 karatsuba 16992 2exp6 16995 2exp8 16997 2exp11 16998 2exp16 16999 7prm 17019 13prm 17024 17prm 17025 19prm 17026 23prm 17027 43prm 17030 83prm 17031 139prm 17032 163prm 17033 317prm 17034 631prm 17035 1259lem1 17039 1259lem2 17040 1259lem3 17041 1259lem4 17042 1259lem5 17043 1259prm 17044 2503lem1 17045 2503lem2 17046 2503lem3 17047 2503prm 17048 4001lem1 17049 4001lem2 17050 4001lem3 17051 4001lem4 17052 4001prm 17053 pcoass 24949 efif1olem2 26477 mcubic 26782 quart1lem 26790 quart1 26791 quartlem1 26792 tanatan 26854 log2ublem3 26883 log2ub 26884 cht3 27108 bclbnd 27216 bpos1lem 27218 bposlem4 27223 bposlem5 27224 bposlem8 27227 2lgslem3a 27332 2lgsoddprmlem3c 27348 2lgsoddprmlem3d 27349 ex-exp 30425 ex-fac 30426 ex-prmo 30434 ipasslem10 30814 siii 30828 normlem3 31087 bcsiALT 31154 dpmul1000 32874 hgt750lem2 34660 12lcm5e60 42040 60lcm7e420 42042 420lcm8e840 42043 3exp7 42085 3lexlogpow5ineq1 42086 3lexlogpow2ineq2 42091 3lexlogpow5ineq5 42092 aks4d1p1 42108 4t5e20 42323 235t711 42337 ex-decpmul 42338 0tie0 42347 3cubeslem3l 42718 3cubeslem3r 42719 sqrtcval2 43674 resqrtvalex 43677 inductionexd 44187 fouriersw 46268 1t10e1p1e11 47340 fmtno5lem1 47583 fmtno5lem2 47584 257prm 47591 fmtno4prmfac 47602 fmtno4nprmfac193 47604 fmtno5faclem2 47610 139prmALT 47626 127prm 47629 mod42tp1mod8 47632 3exp4mod41 47646 41prothprmlem2 47648 2exp340mod341 47763 8exp8mod9 47766 gpg5order 48090 |
| Copyright terms: Public domain | W3C validator |