![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
Ref | Expression |
---|---|
mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
3 | 1, 2 | mulcomi 11298 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
5 | 3, 4 | eqtri 2768 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 ax-mulcom 11248 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: divcan1i 12038 mvllmuli 12127 recgt0ii 12201 nummul2c 12808 halfthird 12901 5recm6rec 12902 sq4e2t8 14248 cos2bnd 16236 prmo3 17088 dec5nprm 17113 decexp2 17122 karatsuba 17131 2exp6 17134 2exp8 17136 2exp11 17137 2exp16 17138 7prm 17158 13prm 17163 17prm 17164 19prm 17165 23prm 17166 43prm 17169 83prm 17170 139prm 17171 163prm 17172 317prm 17173 631prm 17174 1259lem1 17178 1259lem2 17179 1259lem3 17180 1259lem4 17181 1259lem5 17182 1259prm 17183 2503lem1 17184 2503lem2 17185 2503lem3 17186 2503prm 17187 4001lem1 17188 4001lem2 17189 4001lem3 17190 4001lem4 17191 4001prm 17192 pcoass 25076 efif1olem2 26603 mcubic 26908 quart1lem 26916 quart1 26917 quartlem1 26918 tanatan 26980 log2ublem3 27009 log2ub 27010 cht3 27234 bclbnd 27342 bpos1lem 27344 bposlem4 27349 bposlem5 27350 bposlem8 27353 2lgslem3a 27458 2lgsoddprmlem3c 27474 2lgsoddprmlem3d 27475 ex-exp 30482 ex-fac 30483 ex-prmo 30491 ipasslem10 30871 siii 30885 normlem3 31144 bcsiALT 31211 dpmul1000 32863 hgt750lem2 34629 12lcm5e60 41965 60lcm7e420 41967 420lcm8e840 41968 3exp7 42010 3lexlogpow5ineq1 42011 3lexlogpow2ineq2 42016 3lexlogpow5ineq5 42017 aks4d1p1 42033 4t5e20 42280 235t711 42293 ex-decpmul 42294 0tie0 42304 3cubeslem3l 42642 3cubeslem3r 42643 sqrtcval2 43604 resqrtvalex 43607 inductionexd 44117 fouriersw 46152 1t10e1p1e11 47225 fmtno5lem1 47427 fmtno5lem2 47428 257prm 47435 fmtno4prmfac 47446 fmtno4nprmfac193 47448 fmtno5faclem2 47454 139prmALT 47470 127prm 47473 mod42tp1mod8 47476 3exp4mod41 47490 41prothprmlem2 47492 2exp340mod341 47607 8exp8mod9 47610 |
Copyright terms: Public domain | W3C validator |