| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulcomli | Structured version Visualization version GIF version | ||
| Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| mulcomli.3 | ⊢ (𝐴 · 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| mulcomli | ⊢ (𝐵 · 𝐴) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 2 | axi.1 | . . 3 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11127 | . 2 ⊢ (𝐵 · 𝐴) = (𝐴 · 𝐵) |
| 4 | mulcomli.3 | . 2 ⊢ (𝐴 · 𝐵) = 𝐶 | |
| 5 | 3, 4 | eqtri 2756 | 1 ⊢ (𝐵 · 𝐴) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 (class class class)co 7352 ℂcc 11011 · cmul 11018 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 ax-mulcom 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: divcan1i 11872 mvllmuli 11961 recgt0ii 12035 halfthird 12349 nummul2c 12644 5recm6rec 12737 sq4e2t8 14108 cos2bnd 16099 prmo3 16955 dec5nprm 16980 karatsuba 16997 2exp6 17000 2exp8 17002 2exp11 17003 2exp16 17004 7prm 17024 13prm 17029 17prm 17030 19prm 17031 23prm 17032 43prm 17035 83prm 17036 139prm 17037 163prm 17038 317prm 17039 631prm 17040 1259lem1 17044 1259lem2 17045 1259lem3 17046 1259lem4 17047 1259lem5 17048 1259prm 17049 2503lem1 17050 2503lem2 17051 2503lem3 17052 2503prm 17053 4001lem1 17054 4001lem2 17055 4001lem3 17056 4001lem4 17057 4001prm 17058 pcoass 24952 efif1olem2 26480 mcubic 26785 quart1lem 26793 quart1 26794 quartlem1 26795 tanatan 26857 log2ublem3 26886 log2ub 26887 cht3 27111 bclbnd 27219 bpos1lem 27221 bposlem4 27226 bposlem5 27227 bposlem8 27230 2lgslem3a 27335 2lgsoddprmlem3c 27351 2lgsoddprmlem3d 27352 ex-exp 30432 ex-fac 30433 ex-prmo 30441 ipasslem10 30821 siii 30835 normlem3 31094 bcsiALT 31161 dpmul1000 32886 hgt750lem2 34686 12lcm5e60 42121 60lcm7e420 42123 420lcm8e840 42124 3exp7 42166 3lexlogpow5ineq1 42167 3lexlogpow2ineq2 42172 3lexlogpow5ineq5 42173 aks4d1p1 42189 4t5e20 42409 235t711 42423 ex-decpmul 42424 0tie0 42433 3cubeslem3l 42803 3cubeslem3r 42804 sqrtcval2 43759 resqrtvalex 43762 inductionexd 44272 fouriersw 46353 1t10e1p1e11 47434 fmtno5lem1 47677 fmtno5lem2 47678 257prm 47685 fmtno4prmfac 47696 fmtno4nprmfac193 47698 fmtno5faclem2 47704 139prmALT 47720 127prm 47723 mod42tp1mod8 47726 3exp4mod41 47740 41prothprmlem2 47742 2exp340mod341 47857 8exp8mod9 47860 gpg5order 48184 |
| Copyright terms: Public domain | W3C validator |