MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma2c Structured version   Visualization version   GIF version

Theorem numma2c 12494
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma2c.8 𝑃 ∈ ℕ0
numma2c.9 𝐹 ∈ ℕ0
numma2c.10 𝐺 ∈ ℕ0
numma2c.11 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
numma2c.12 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
numma2c ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma2c
StepHypRef Expression
1 numma2c.8 . . . . 5 𝑃 ∈ ℕ0
21nn0cni 12256 . . . 4 𝑃 ∈ ℂ
3 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
4 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
5 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
6 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
74, 5, 6numcl 12461 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
83, 7eqeltri 2837 . . . . 5 𝑀 ∈ ℕ0
98nn0cni 12256 . . . 4 𝑀 ∈ ℂ
102, 9mulcomi 10994 . . 3 (𝑃 · 𝑀) = (𝑀 · 𝑃)
1110oveq1i 7282 . 2 ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁)
12 numma.4 . . 3 𝐶 ∈ ℕ0
13 numma.5 . . 3 𝐷 ∈ ℕ0
14 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
15 numma2c.9 . . 3 𝐹 ∈ ℕ0
16 numma2c.10 . . 3 𝐺 ∈ ℕ0
175nn0cni 12256 . . . . . 6 𝐴 ∈ ℂ
1817, 2mulcomi 10994 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1918oveq1i 7282 . . . 4 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺))
20 numma2c.11 . . . 4 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
2119, 20eqtri 2768 . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
226nn0cni 12256 . . . . . 6 𝐵 ∈ ℂ
2322, 2mulcomi 10994 . . . . 5 (𝐵 · 𝑃) = (𝑃 · 𝐵)
2423oveq1i 7282 . . . 4 ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷)
25 numma2c.12 . . . 4 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
2624, 25eqtri 2768 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
274, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26nummac 12493 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
2811, 27eqtri 2768 1 ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2110  (class class class)co 7272   + caddc 10885   · cmul 10887  0cn0 12244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-resscn 10939  ax-1cn 10940  ax-icn 10941  ax-addcl 10942  ax-addrcl 10943  ax-mulcl 10944  ax-mulrcl 10945  ax-mulcom 10946  ax-addass 10947  ax-mulass 10948  ax-distr 10949  ax-i2m1 10950  ax-1ne0 10951  ax-1rid 10952  ax-rnegex 10953  ax-rrecex 10954  ax-cnre 10955  ax-pre-lttri 10956  ax-pre-lttrn 10957  ax-pre-ltadd 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7229  df-ov 7275  df-oprab 7276  df-mpo 7277  df-om 7708  df-2nd 7826  df-frecs 8089  df-wrecs 8120  df-recs 8194  df-rdg 8233  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-ltxr 11025  df-sub 11218  df-nn 11985  df-n0 12245
This theorem is referenced by:  decma2c  12501
  Copyright terms: Public domain W3C validator