MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma2c Structured version   Visualization version   GIF version

Theorem numma2c 12640
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma2c.8 𝑃 ∈ ℕ0
numma2c.9 𝐹 ∈ ℕ0
numma2c.10 𝐺 ∈ ℕ0
numma2c.11 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
numma2c.12 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
numma2c ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma2c
StepHypRef Expression
1 numma2c.8 . . . . 5 𝑃 ∈ ℕ0
21nn0cni 12400 . . . 4 𝑃 ∈ ℂ
3 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
4 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
5 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
6 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
74, 5, 6numcl 12607 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
83, 7eqeltri 2829 . . . . 5 𝑀 ∈ ℕ0
98nn0cni 12400 . . . 4 𝑀 ∈ ℂ
102, 9mulcomi 11127 . . 3 (𝑃 · 𝑀) = (𝑀 · 𝑃)
1110oveq1i 7362 . 2 ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁)
12 numma.4 . . 3 𝐶 ∈ ℕ0
13 numma.5 . . 3 𝐷 ∈ ℕ0
14 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
15 numma2c.9 . . 3 𝐹 ∈ ℕ0
16 numma2c.10 . . 3 𝐺 ∈ ℕ0
175nn0cni 12400 . . . . . 6 𝐴 ∈ ℂ
1817, 2mulcomi 11127 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1918oveq1i 7362 . . . 4 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺))
20 numma2c.11 . . . 4 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
2119, 20eqtri 2756 . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
226nn0cni 12400 . . . . . 6 𝐵 ∈ ℂ
2322, 2mulcomi 11127 . . . . 5 (𝐵 · 𝑃) = (𝑃 · 𝐵)
2423oveq1i 7362 . . . 4 ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷)
25 numma2c.12 . . . 4 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
2624, 25eqtri 2756 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
274, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26nummac 12639 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
2811, 27eqtri 2756 1 ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2113  (class class class)co 7352   + caddc 11016   · cmul 11018  0cn0 12388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-ltxr 11158  df-sub 11353  df-nn 12133  df-n0 12389
This theorem is referenced by:  decma2c  12647
  Copyright terms: Public domain W3C validator