MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma2c Structured version   Visualization version   GIF version

Theorem numma2c 12777
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma2c.8 𝑃 ∈ ℕ0
numma2c.9 𝐹 ∈ ℕ0
numma2c.10 𝐺 ∈ ℕ0
numma2c.11 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
numma2c.12 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
numma2c ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma2c
StepHypRef Expression
1 numma2c.8 . . . . 5 𝑃 ∈ ℕ0
21nn0cni 12536 . . . 4 𝑃 ∈ ℂ
3 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
4 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
5 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
6 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
74, 5, 6numcl 12744 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
83, 7eqeltri 2835 . . . . 5 𝑀 ∈ ℕ0
98nn0cni 12536 . . . 4 𝑀 ∈ ℂ
102, 9mulcomi 11267 . . 3 (𝑃 · 𝑀) = (𝑀 · 𝑃)
1110oveq1i 7441 . 2 ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁)
12 numma.4 . . 3 𝐶 ∈ ℕ0
13 numma.5 . . 3 𝐷 ∈ ℕ0
14 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
15 numma2c.9 . . 3 𝐹 ∈ ℕ0
16 numma2c.10 . . 3 𝐺 ∈ ℕ0
175nn0cni 12536 . . . . . 6 𝐴 ∈ ℂ
1817, 2mulcomi 11267 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1918oveq1i 7441 . . . 4 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺))
20 numma2c.11 . . . 4 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
2119, 20eqtri 2763 . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
226nn0cni 12536 . . . . . 6 𝐵 ∈ ℂ
2322, 2mulcomi 11267 . . . . 5 (𝐵 · 𝑃) = (𝑃 · 𝐵)
2423oveq1i 7441 . . . 4 ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷)
25 numma2c.12 . . . 4 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
2624, 25eqtri 2763 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
274, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26nummac 12776 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
2811, 27eqtri 2763 1 ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  (class class class)co 7431   + caddc 11156   · cmul 11158  0cn0 12524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-nn 12265  df-n0 12525
This theorem is referenced by:  decma2c  12784
  Copyright terms: Public domain W3C validator