MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numma2c Structured version   Visualization version   GIF version

Theorem numma2c 12739
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
numma2c.8 𝑃 ∈ ℕ0
numma2c.9 𝐹 ∈ ℕ0
numma2c.10 𝐺 ∈ ℕ0
numma2c.11 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
numma2c.12 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
numma2c ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem numma2c
StepHypRef Expression
1 numma2c.8 . . . . 5 𝑃 ∈ ℕ0
21nn0cni 12500 . . . 4 𝑃 ∈ ℂ
3 numma.6 . . . . . 6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
4 numma.1 . . . . . . 7 𝑇 ∈ ℕ0
5 numma.2 . . . . . . 7 𝐴 ∈ ℕ0
6 numma.3 . . . . . . 7 𝐵 ∈ ℕ0
74, 5, 6numcl 12706 . . . . . 6 ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0
83, 7eqeltri 2824 . . . . 5 𝑀 ∈ ℕ0
98nn0cni 12500 . . . 4 𝑀 ∈ ℂ
102, 9mulcomi 11238 . . 3 (𝑃 · 𝑀) = (𝑀 · 𝑃)
1110oveq1i 7424 . 2 ((𝑃 · 𝑀) + 𝑁) = ((𝑀 · 𝑃) + 𝑁)
12 numma.4 . . 3 𝐶 ∈ ℕ0
13 numma.5 . . 3 𝐷 ∈ ℕ0
14 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
15 numma2c.9 . . 3 𝐹 ∈ ℕ0
16 numma2c.10 . . 3 𝐺 ∈ ℕ0
175nn0cni 12500 . . . . . 6 𝐴 ∈ ℂ
1817, 2mulcomi 11238 . . . . 5 (𝐴 · 𝑃) = (𝑃 · 𝐴)
1918oveq1i 7424 . . . 4 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = ((𝑃 · 𝐴) + (𝐶 + 𝐺))
20 numma2c.11 . . . 4 ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸
2119, 20eqtri 2755 . . 3 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
226nn0cni 12500 . . . . . 6 𝐵 ∈ ℂ
2322, 2mulcomi 11238 . . . . 5 (𝐵 · 𝑃) = (𝑃 · 𝐵)
2423oveq1i 7424 . . . 4 ((𝐵 · 𝑃) + 𝐷) = ((𝑃 · 𝐵) + 𝐷)
25 numma2c.12 . . . 4 ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
2624, 25eqtri 2755 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
274, 5, 6, 12, 13, 3, 14, 1, 15, 16, 21, 26nummac 12738 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
2811, 27eqtri 2755 1 ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  (class class class)co 7414   + caddc 11127   · cmul 11129  0cn0 12488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-resscn 11181  ax-1cn 11182  ax-icn 11183  ax-addcl 11184  ax-addrcl 11185  ax-mulcl 11186  ax-mulrcl 11187  ax-mulcom 11188  ax-addass 11189  ax-mulass 11190  ax-distr 11191  ax-i2m1 11192  ax-1ne0 11193  ax-1rid 11194  ax-rnegex 11195  ax-rrecex 11196  ax-cnre 11197  ax-pre-lttri 11198  ax-pre-lttrn 11199  ax-pre-ltadd 11200
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7863  df-2nd 7986  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-er 8716  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-ltxr 11269  df-sub 11462  df-nn 12229  df-n0 12489
This theorem is referenced by:  decma2c  12746
  Copyright terms: Public domain W3C validator