| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > divmul13i | Structured version Visualization version GIF version | ||
| Description: Swap denominators of two ratios. (Contributed by NM, 6-Aug-1999.) |
| Ref | Expression |
|---|---|
| divclz.1 | ⊢ 𝐴 ∈ ℂ |
| divclz.2 | ⊢ 𝐵 ∈ ℂ |
| divmulz.3 | ⊢ 𝐶 ∈ ℂ |
| divmuldiv.4 | ⊢ 𝐷 ∈ ℂ |
| divmuldiv.5 | ⊢ 𝐵 ≠ 0 |
| divmuldiv.6 | ⊢ 𝐷 ≠ 0 |
| Ref | Expression |
|---|---|
| divmul13i | ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divmulz.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
| 2 | divclz.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
| 3 | 1, 2 | mulcomi 11127 | . . 3 ⊢ (𝐶 · 𝐴) = (𝐴 · 𝐶) |
| 4 | 3 | oveq1i 7362 | . 2 ⊢ ((𝐶 · 𝐴) / (𝐵 · 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| 5 | divclz.2 | . . 3 ⊢ 𝐵 ∈ ℂ | |
| 6 | divmuldiv.4 | . . 3 ⊢ 𝐷 ∈ ℂ | |
| 7 | divmuldiv.5 | . . 3 ⊢ 𝐵 ≠ 0 | |
| 8 | divmuldiv.6 | . . 3 ⊢ 𝐷 ≠ 0 | |
| 9 | 1, 5, 2, 6, 7, 8 | divmuldivi 11888 | . 2 ⊢ ((𝐶 / 𝐵) · (𝐴 / 𝐷)) = ((𝐶 · 𝐴) / (𝐵 · 𝐷)) |
| 10 | 2, 5, 1, 6, 7, 8 | divmuldivi 11888 | . 2 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) |
| 11 | 4, 9, 10 | 3eqtr4ri 2767 | 1 ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 ≠ wne 2929 (class class class)co 7352 ℂcc 11011 0cc0 11013 · cmul 11018 / cdiv 11781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |