![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nummul2c | Structured version Visualization version GIF version |
Description: The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
nummul1c.1 | ⊢ 𝑇 ∈ ℕ0 |
nummul1c.2 | ⊢ 𝑃 ∈ ℕ0 |
nummul1c.3 | ⊢ 𝐴 ∈ ℕ0 |
nummul1c.4 | ⊢ 𝐵 ∈ ℕ0 |
nummul1c.5 | ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) |
nummul1c.6 | ⊢ 𝐷 ∈ ℕ0 |
nummul1c.7 | ⊢ 𝐸 ∈ ℕ0 |
nummul2c.7 | ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 |
nummul2c.8 | ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) |
Ref | Expression |
---|---|
nummul2c | ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nummul1c.5 | . . . 4 ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) | |
2 | nummul1c.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
3 | nummul1c.3 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
4 | nummul1c.4 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
5 | 2, 3, 4 | numcl 11960 | . . . 4 ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 |
6 | 1, 5 | eqeltri 2879 | . . 3 ⊢ 𝑁 ∈ ℕ0 |
7 | 6 | nn0cni 11757 | . 2 ⊢ 𝑁 ∈ ℂ |
8 | nummul1c.2 | . . 3 ⊢ 𝑃 ∈ ℕ0 | |
9 | 8 | nn0cni 11757 | . 2 ⊢ 𝑃 ∈ ℂ |
10 | nummul1c.6 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
11 | nummul1c.7 | . . 3 ⊢ 𝐸 ∈ ℕ0 | |
12 | 3 | nn0cni 11757 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
13 | 12, 9 | mulcomi 10495 | . . . . 5 ⊢ (𝐴 · 𝑃) = (𝑃 · 𝐴) |
14 | 13 | oveq1i 7026 | . . . 4 ⊢ ((𝐴 · 𝑃) + 𝐸) = ((𝑃 · 𝐴) + 𝐸) |
15 | nummul2c.7 | . . . 4 ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 | |
16 | 14, 15 | eqtri 2819 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 |
17 | 4 | nn0cni 11757 | . . . 4 ⊢ 𝐵 ∈ ℂ |
18 | nummul2c.8 | . . . 4 ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) | |
19 | 9, 17, 18 | mulcomli 10496 | . . 3 ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) |
20 | 2, 8, 3, 4, 1, 10, 11, 16, 19 | nummul1c 11996 | . 2 ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) |
21 | 7, 9, 20 | mulcomli 10496 | 1 ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 (class class class)co 7016 + caddc 10386 · cmul 10388 ℕ0cn0 11745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-ltxr 10526 df-sub 10719 df-nn 11487 df-n0 11746 |
This theorem is referenced by: decmul2c 12014 |
Copyright terms: Public domain | W3C validator |