| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mvrvalind | Structured version Visualization version GIF version | ||
| Description: Value of the generating elements of the power series structure, expressed using the indicator function. (Contributed by Thierry Arnoux, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| mvrvalind.1 | ⊢ 𝑉 = (𝐼 mVar 𝑅) |
| mvrvalind.2 | ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| mvrvalind.3 | ⊢ 0 = (0g‘𝑅) |
| mvrvalind.4 | ⊢ 1 = (1r‘𝑅) |
| mvrvalind.5 | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| mvrvalind.6 | ⊢ (𝜑 → 𝑅 ∈ 𝑌) |
| mvrvalind.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
| mvrvalind.8 | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mvrvalind.9 | ⊢ 𝐴 = ((𝟭‘𝐼)‘{𝑋}) |
| Ref | Expression |
|---|---|
| mvrvalind | ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = 𝐴, 1 , 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mvrvalind.1 | . . 3 ⊢ 𝑉 = (𝐼 mVar 𝑅) | |
| 2 | mvrvalind.2 | . . 3 ⊢ 𝐷 = {ℎ ∈ (ℕ0 ↑m 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
| 3 | mvrvalind.3 | . . 3 ⊢ 0 = (0g‘𝑅) | |
| 4 | mvrvalind.4 | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 5 | mvrvalind.5 | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 6 | mvrvalind.6 | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑌) | |
| 7 | mvrvalind.7 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
| 8 | mvrvalind.8 | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | mvrval2 21921 | . 2 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
| 10 | mvrvalind.9 | . . . . . 6 ⊢ 𝐴 = ((𝟭‘𝐼)‘{𝑋}) | |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐴 = ((𝟭‘𝐼)‘{𝑋})) |
| 12 | 7 | snssd 4760 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ 𝐼) |
| 13 | indval 32839 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑊 ∧ {𝑋} ⊆ 𝐼) → ((𝟭‘𝐼)‘{𝑋}) = (𝑦 ∈ 𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0))) | |
| 14 | 5, 12, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝟭‘𝐼)‘{𝑋}) = (𝑦 ∈ 𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0))) |
| 15 | velsn 4591 | . . . . . . . 8 ⊢ (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋) | |
| 16 | 15 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)) |
| 17 | 16 | ifbid 4498 | . . . . . 6 ⊢ (𝜑 → if(𝑦 ∈ {𝑋}, 1, 0) = if(𝑦 = 𝑋, 1, 0)) |
| 18 | 17 | mpteq2dv 5187 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ 𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0)) = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 19 | 11, 14, 18 | 3eqtrd 2772 | . . . 4 ⊢ (𝜑 → 𝐴 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0))) |
| 20 | 19 | eqeq2d 2744 | . . 3 ⊢ (𝜑 → (𝐹 = 𝐴 ↔ 𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))) |
| 21 | 20 | ifbid 4498 | . 2 ⊢ (𝜑 → if(𝐹 = 𝐴, 1 , 0 ) = if(𝐹 = (𝑦 ∈ 𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 )) |
| 22 | 9, 21 | eqtr4d 2771 | 1 ⊢ (𝜑 → ((𝑉‘𝑋)‘𝐹) = if(𝐹 = 𝐴, 1 , 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 {crab 3396 ⊆ wss 3898 ifcif 4474 {csn 4575 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 ‘cfv 6486 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 0cc0 11013 1c1 11014 ℕcn 12132 ℕ0cn0 12388 0gc0g 17345 1rcur 20101 mVar cmvr 21844 𝟭cind 32836 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-mvr 21849 df-ind 32837 |
| This theorem is referenced by: mplmulmvr 33590 |
| Copyright terms: Public domain | W3C validator |