Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mvrvalind Structured version   Visualization version   GIF version

Theorem mvrvalind 33589
Description: Value of the generating elements of the power series structure, expressed using the indicator function. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypotheses
Ref Expression
mvrvalind.1 𝑉 = (𝐼 mVar 𝑅)
mvrvalind.2 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
mvrvalind.3 0 = (0g𝑅)
mvrvalind.4 1 = (1r𝑅)
mvrvalind.5 (𝜑𝐼𝑊)
mvrvalind.6 (𝜑𝑅𝑌)
mvrvalind.7 (𝜑𝑋𝐼)
mvrvalind.8 (𝜑𝐹𝐷)
mvrvalind.9 𝐴 = ((𝟭‘𝐼)‘{𝑋})
Assertion
Ref Expression
mvrvalind (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = 𝐴, 1 , 0 ))
Distinct variable groups:   ,𝐼   ,𝑋
Allowed substitution hints:   𝜑()   𝐴()   𝐷()   𝑅()   1 ()   𝐹()   𝑉()   𝑊()   𝑌()   0 ()

Proof of Theorem mvrvalind
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mvrvalind.1 . . 3 𝑉 = (𝐼 mVar 𝑅)
2 mvrvalind.2 . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ ( “ ℕ) ∈ Fin}
3 mvrvalind.3 . . 3 0 = (0g𝑅)
4 mvrvalind.4 . . 3 1 = (1r𝑅)
5 mvrvalind.5 . . 3 (𝜑𝐼𝑊)
6 mvrvalind.6 . . 3 (𝜑𝑅𝑌)
7 mvrvalind.7 . . 3 (𝜑𝑋𝐼)
8 mvrvalind.8 . . 3 (𝜑𝐹𝐷)
91, 2, 3, 4, 5, 6, 7, 8mvrval2 21921 . 2 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
10 mvrvalind.9 . . . . . 6 𝐴 = ((𝟭‘𝐼)‘{𝑋})
1110a1i 11 . . . . 5 (𝜑𝐴 = ((𝟭‘𝐼)‘{𝑋}))
127snssd 4760 . . . . . 6 (𝜑 → {𝑋} ⊆ 𝐼)
13 indval 32839 . . . . . 6 ((𝐼𝑊 ∧ {𝑋} ⊆ 𝐼) → ((𝟭‘𝐼)‘{𝑋}) = (𝑦𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0)))
145, 12, 13syl2anc 584 . . . . 5 (𝜑 → ((𝟭‘𝐼)‘{𝑋}) = (𝑦𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0)))
15 velsn 4591 . . . . . . . 8 (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋)
1615a1i 11 . . . . . . 7 (𝜑 → (𝑦 ∈ {𝑋} ↔ 𝑦 = 𝑋))
1716ifbid 4498 . . . . . 6 (𝜑 → if(𝑦 ∈ {𝑋}, 1, 0) = if(𝑦 = 𝑋, 1, 0))
1817mpteq2dv 5187 . . . . 5 (𝜑 → (𝑦𝐼 ↦ if(𝑦 ∈ {𝑋}, 1, 0)) = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
1911, 14, 183eqtrd 2772 . . . 4 (𝜑𝐴 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)))
2019eqeq2d 2744 . . 3 (𝜑 → (𝐹 = 𝐴𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0))))
2120ifbid 4498 . 2 (𝜑 → if(𝐹 = 𝐴, 1 , 0 ) = if(𝐹 = (𝑦𝐼 ↦ if(𝑦 = 𝑋, 1, 0)), 1 , 0 ))
229, 21eqtr4d 2771 1 (𝜑 → ((𝑉𝑋)‘𝐹) = if(𝐹 = 𝐴, 1 , 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3396  wss 3898  ifcif 4474  {csn 4575  cmpt 5174  ccnv 5618  cima 5622  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875  0cc0 11013  1c1 11014  cn 12132  0cn0 12388  0gc0g 17345  1rcur 20101   mVar cmvr 21844  𝟭cind 32836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-mvr 21849  df-ind 32837
This theorem is referenced by:  mplmulmvr  33590
  Copyright terms: Public domain W3C validator