![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neif | Structured version Visualization version GIF version |
Description: The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
neifval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
neif | β’ (π½ β Top β (neiβπ½) Fn π« π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . . . 6 β’ π = βͺ π½ | |
2 | 1 | topopn 22399 | . . . . 5 β’ (π½ β Top β π β π½) |
3 | pwexg 5375 | . . . . 5 β’ (π β π½ β π« π β V) | |
4 | rabexg 5330 | . . . . 5 β’ (π« π β V β {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)} β V) | |
5 | 2, 3, 4 | 3syl 18 | . . . 4 β’ (π½ β Top β {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)} β V) |
6 | 5 | ralrimivw 3150 | . . 3 β’ (π½ β Top β βπ₯ β π« π{π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)} β V) |
7 | eqid 2732 | . . . 4 β’ (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)}) = (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)}) | |
8 | 7 | fnmpt 6687 | . . 3 β’ (βπ₯ β π« π{π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)} β V β (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)}) Fn π« π) |
9 | 6, 8 | syl 17 | . 2 β’ (π½ β Top β (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)}) Fn π« π) |
10 | 1 | neifval 22594 | . . 3 β’ (π½ β Top β (neiβπ½) = (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)})) |
11 | 10 | fneq1d 6639 | . 2 β’ (π½ β Top β ((neiβπ½) Fn π« π β (π₯ β π« π β¦ {π£ β π« π β£ βπ β π½ (π₯ β π β§ π β π£)}) Fn π« π)) |
12 | 9, 11 | mpbird 256 | 1 β’ (π½ β Top β (neiβπ½) Fn π« π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 βͺ cuni 4907 β¦ cmpt 5230 Fn wfn 6535 βcfv 6540 Topctop 22386 neicnei 22592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-top 22387 df-nei 22593 |
This theorem is referenced by: neiss2 22596 |
Copyright terms: Public domain | W3C validator |