MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neif Structured version   Visualization version   GIF version

Theorem neif 23003
Description: The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neif (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)

Proof of Theorem neif
Dummy variables 𝑔 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . . . 6 𝑋 = 𝐽
21topopn 22809 . . . . 5 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5320 . . . . 5 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 rabexg 5279 . . . . 5 (𝒫 𝑋 ∈ V → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)} ∈ V)
52, 3, 43syl 18 . . . 4 (𝐽 ∈ Top → {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)} ∈ V)
65ralrimivw 3125 . . 3 (𝐽 ∈ Top → ∀𝑥 ∈ 𝒫 𝑋{𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)} ∈ V)
7 eqid 2729 . . . 4 (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})
87fnmpt 6626 . . 3 (∀𝑥 ∈ 𝒫 𝑋{𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)} ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) Fn 𝒫 𝑋)
96, 8syl 17 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) Fn 𝒫 𝑋)
101neifval 23002 . . 3 (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
1110fneq1d 6579 . 2 (𝐽 ∈ Top → ((nei‘𝐽) Fn 𝒫 𝑋 ↔ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) Fn 𝒫 𝑋))
129, 11mpbird 257 1 (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3396  Vcvv 3438  wss 3905  𝒫 cpw 4553   cuni 4861  cmpt 5176   Fn wfn 6481  cfv 6486  Topctop 22796  neicnei 23000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22797  df-nei 23001
This theorem is referenced by:  neiss2  23004
  Copyright terms: Public domain W3C validator