MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiss2 Structured version   Visualization version   GIF version

Theorem neiss2 22949
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
neiss2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 βŠ† 𝑋)

Proof of Theorem neiss2
StepHypRef Expression
1 elfvdm 6919 . . . 4 (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) β†’ 𝑆 ∈ dom (neiβ€˜π½))
21adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 ∈ dom (neiβ€˜π½))
3 neifval.1 . . . . . . 7 𝑋 = βˆͺ 𝐽
43neif 22948 . . . . . 6 (𝐽 ∈ Top β†’ (neiβ€˜π½) Fn 𝒫 𝑋)
54fndmd 6645 . . . . 5 (𝐽 ∈ Top β†’ dom (neiβ€˜π½) = 𝒫 𝑋)
65eleq2d 2811 . . . 4 (𝐽 ∈ Top β†’ (𝑆 ∈ dom (neiβ€˜π½) ↔ 𝑆 ∈ 𝒫 𝑋))
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ (𝑆 ∈ dom (neiβ€˜π½) ↔ 𝑆 ∈ 𝒫 𝑋))
82, 7mpbid 231 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 ∈ 𝒫 𝑋)
98elpwid 4604 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 βŠ† 𝑋)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098   βŠ† wss 3941  π’« cpw 4595  βˆͺ cuni 4900  dom cdm 5667  β€˜cfv 6534  Topctop 22739  neicnei 22945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-top 22740  df-nei 22946
This theorem is referenced by:  neii1  22954  neii2  22956  neiss  22957  ssnei2  22964  topssnei  22972  innei  22973  neitx  23455  cvmlift2lem12  34823  neiin  35718  cnneiima  47797
  Copyright terms: Public domain W3C validator