MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiss2 Structured version   Visualization version   GIF version

Theorem neiss2 23036
Description: A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neiss2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)

Proof of Theorem neiss2
StepHypRef Expression
1 elfvdm 6865 . . . 4 (𝑁 ∈ ((nei‘𝐽)‘𝑆) → 𝑆 ∈ dom (nei‘𝐽))
21adantl 481 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ dom (nei‘𝐽))
3 neifval.1 . . . . . . 7 𝑋 = 𝐽
43neif 23035 . . . . . 6 (𝐽 ∈ Top → (nei‘𝐽) Fn 𝒫 𝑋)
54fndmd 6594 . . . . 5 (𝐽 ∈ Top → dom (nei‘𝐽) = 𝒫 𝑋)
65eleq2d 2819 . . . 4 (𝐽 ∈ Top → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
76adantr 480 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → (𝑆 ∈ dom (nei‘𝐽) ↔ 𝑆 ∈ 𝒫 𝑋))
82, 7mpbid 232 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ∈ 𝒫 𝑋)
98elpwid 4560 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wss 3898  𝒫 cpw 4551   cuni 4860  dom cdm 5621  cfv 6489  Topctop 22828  neicnei 23032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-top 22829  df-nei 23033
This theorem is referenced by:  neii1  23041  neii2  23043  neiss  23044  ssnei2  23051  topssnei  23059  innei  23060  neitx  23542  cvmlift2lem12  35430  neiin  36448  cnneiima  49078
  Copyright terms: Public domain W3C validator