MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifval Structured version   Visualization version   GIF version

Theorem neifval 22823
Description: Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
neifval (𝐽 ∈ Top β†’ (neiβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
Distinct variable groups:   𝑣,𝑔,π‘₯,𝐽   𝑔,𝑋,𝑣,π‘₯

Proof of Theorem neifval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = βˆͺ 𝐽
21topopn 22628 . . 3 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
3 pwexg 5376 . . 3 (𝑋 ∈ 𝐽 β†’ 𝒫 𝑋 ∈ V)
4 mptexg 7225 . . 3 (𝒫 𝑋 ∈ V β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top β†’ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}) ∈ V)
6 unieq 4919 . . . . . 6 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = βˆͺ 𝐽)
76, 1eqtr4di 2790 . . . . 5 (𝑗 = 𝐽 β†’ βˆͺ 𝑗 = 𝑋)
87pweqd 4619 . . . 4 (𝑗 = 𝐽 β†’ 𝒫 βˆͺ 𝑗 = 𝒫 𝑋)
9 rexeq 3321 . . . . 5 (𝑗 = 𝐽 β†’ (βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣) ↔ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)))
108, 9rabeqbidv 3449 . . . 4 (𝑗 = 𝐽 β†’ {𝑣 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)} = {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)})
118, 10mpteq12dv 5239 . . 3 (𝑗 = 𝐽 β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑣 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
12 df-nei 22822 . . 3 nei = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑣 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
1311, 12fvmptg 6996 . 2 ((𝐽 ∈ Top ∧ (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}) ∈ V) β†’ (neiβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
145, 13mpdan 685 1 (𝐽 ∈ Top β†’ (neiβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474   βŠ† wss 3948  π’« cpw 4602  βˆͺ cuni 4908   ↦ cmpt 5231  β€˜cfv 6543  Topctop 22615  neicnei 22821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-top 22616  df-nei 22822
This theorem is referenced by:  neif  22824  neival  22826
  Copyright terms: Public domain W3C validator