MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neifval Structured version   Visualization version   GIF version

Theorem neifval 22158
Description: Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
neifval (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
Distinct variable groups:   𝑣,𝑔,𝑥,𝐽   𝑔,𝑋,𝑣,𝑥

Proof of Theorem neifval
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = 𝐽
21topopn 21963 . . 3 (𝐽 ∈ Top → 𝑋𝐽)
3 pwexg 5296 . . 3 (𝑋𝐽 → 𝒫 𝑋 ∈ V)
4 mptexg 7079 . . 3 (𝒫 𝑋 ∈ V → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) ∈ V)
52, 3, 43syl 18 . 2 (𝐽 ∈ Top → (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) ∈ V)
6 unieq 4847 . . . . . 6 (𝑗 = 𝐽 𝑗 = 𝐽)
76, 1eqtr4di 2797 . . . . 5 (𝑗 = 𝐽 𝑗 = 𝑋)
87pweqd 4549 . . . 4 (𝑗 = 𝐽 → 𝒫 𝑗 = 𝒫 𝑋)
9 rexeq 3334 . . . . 5 (𝑗 = 𝐽 → (∃𝑔𝑗 (𝑥𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)))
108, 9rabeqbidv 3410 . . . 4 (𝑗 = 𝐽 → {𝑣 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑣)} = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)})
118, 10mpteq12dv 5161 . . 3 (𝑗 = 𝐽 → (𝑥 ∈ 𝒫 𝑗 ↦ {𝑣 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑣)}) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
12 df-nei 22157 . . 3 nei = (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 𝑗 ↦ {𝑣 ∈ 𝒫 𝑗 ∣ ∃𝑔𝑗 (𝑥𝑔𝑔𝑣)}))
1311, 12fvmptg 6855 . 2 ((𝐽 ∈ Top ∧ (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}) ∈ V) → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
145, 13mpdan 683 1 (𝐽 ∈ Top → (nei‘𝐽) = (𝑥 ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑥𝑔𝑔𝑣)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836  cmpt 5153  cfv 6418  Topctop 21950  neicnei 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-top 21951  df-nei 22157
This theorem is referenced by:  neif  22159  neival  22161
  Copyright terms: Public domain W3C validator