Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neiss | Structured version Visualization version GIF version |
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
Ref | Expression |
---|---|
neiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | neii1 22165 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
3 | 2 | 3adant3 1130 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ⊆ ∪ 𝐽) |
4 | neii2 22167 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | |
5 | 4 | 3adant3 1130 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
6 | sstr2 3924 | . . . . . 6 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑔 → 𝑅 ⊆ 𝑔)) | |
7 | 6 | anim1d 610 | . . . . 5 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | reximdv 3201 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
9 | 8 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | simp1 1134 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝐽 ∈ Top) | |
12 | simp3 1136 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ 𝑆) | |
13 | 1 | neiss2 22160 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 13 | 3adant3 1130 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
15 | 12, 14 | sstrd 3927 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ ∪ 𝐽) |
16 | 1 | isnei 22162 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑅 ⊆ ∪ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 11, 15, 16 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 3, 10, 17 | mpbir2and 709 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∃wrex 3064 ⊆ wss 3883 ∪ cuni 4836 ‘cfv 6418 Topctop 21950 neicnei 22156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-top 21951 df-nei 22157 |
This theorem is referenced by: neips 22172 neissex 22186 |
Copyright terms: Public domain | W3C validator |