Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . . 4
β’ βͺ π½ =
βͺ π½ |
2 | 1 | neii1 22830 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β βͺ π½) |
3 | 2 | 3adant3 1132 |
. 2
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π β βͺ π½) |
4 | | neii2 22832 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β βπ β π½ (π β π β§ π β π)) |
5 | 4 | 3adant3 1132 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β βπ β π½ (π β π β§ π β π)) |
6 | | sstr2 3989 |
. . . . . 6
β’ (π
β π β (π β π β π
β π)) |
7 | 6 | anim1d 611 |
. . . . 5
β’ (π
β π β ((π β π β§ π β π) β (π
β π β§ π β π))) |
8 | 7 | reximdv 3170 |
. . . 4
β’ (π
β π β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π
β π β§ π β π))) |
9 | 8 | 3ad2ant3 1135 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β (βπ β π½ (π β π β§ π β π) β βπ β π½ (π
β π β§ π β π))) |
10 | 5, 9 | mpd 15 |
. 2
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β βπ β π½ (π
β π β§ π β π)) |
11 | | simp1 1136 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π½ β Top) |
12 | | simp3 1138 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π
β π) |
13 | 1 | neiss2 22825 |
. . . . 5
β’ ((π½ β Top β§ π β ((neiβπ½)βπ)) β π β βͺ π½) |
14 | 13 | 3adant3 1132 |
. . . 4
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π β βͺ π½) |
15 | 12, 14 | sstrd 3992 |
. . 3
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π
β βͺ π½) |
16 | 1 | isnei 22827 |
. . 3
β’ ((π½ β Top β§ π
β βͺ π½)
β (π β
((neiβπ½)βπ
) β (π β βͺ π½ β§ βπ β π½ (π
β π β§ π β π)))) |
17 | 11, 15, 16 | syl2anc 584 |
. 2
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β (π β ((neiβπ½)βπ
) β (π β βͺ π½ β§ βπ β π½ (π
β π β§ π β π)))) |
18 | 3, 10, 17 | mpbir2and 711 |
1
β’ ((π½ β Top β§ π β ((neiβπ½)βπ) β§ π
β π) β π β ((neiβπ½)βπ
)) |