MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiss Structured version   Visualization version   GIF version

Theorem neiss 23045
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
Assertion
Ref Expression
neiss ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))

Proof of Theorem neiss
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 𝐽 = 𝐽
21neii1 23042 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 𝐽)
323adant3 1132 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 𝐽)
4 neii2 23044 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
543adant3 1132 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))
6 sstr2 3965 . . . . . 6 (𝑅𝑆 → (𝑆𝑔𝑅𝑔))
76anim1d 611 . . . . 5 (𝑅𝑆 → ((𝑆𝑔𝑔𝑁) → (𝑅𝑔𝑔𝑁)))
87reximdv 3155 . . . 4 (𝑅𝑆 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁)))
983ad2ant3 1135 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → (∃𝑔𝐽 (𝑆𝑔𝑔𝑁) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁)))
105, 9mpd 15 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))
11 simp1 1136 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝐽 ∈ Top)
12 simp3 1138 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑅𝑆)
131neiss2 23037 . . . . 5 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 𝐽)
14133adant3 1132 . . . 4 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑆 𝐽)
1512, 14sstrd 3969 . . 3 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑅 𝐽)
161isnei 23039 . . 3 ((𝐽 ∈ Top ∧ 𝑅 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))))
1711, 15, 16syl2anc 584 . 2 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 𝐽 ∧ ∃𝑔𝐽 (𝑅𝑔𝑔𝑁))))
183, 10, 17mpbir2and 713 1 ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2108  wrex 3060  wss 3926   cuni 4883  cfv 6530  Topctop 22829  neicnei 23033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-top 22830  df-nei 23034
This theorem is referenced by:  neips  23049  neissex  23063
  Copyright terms: Public domain W3C validator