![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neiss | Structured version Visualization version GIF version |
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
Ref | Expression |
---|---|
neiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | neii1 23135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
3 | 2 | 3adant3 1132 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ⊆ ∪ 𝐽) |
4 | neii2 23137 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | |
5 | 4 | 3adant3 1132 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
6 | sstr2 4015 | . . . . . 6 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑔 → 𝑅 ⊆ 𝑔)) | |
7 | 6 | anim1d 610 | . . . . 5 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | reximdv 3176 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
9 | 8 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | simp1 1136 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝐽 ∈ Top) | |
12 | simp3 1138 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ 𝑆) | |
13 | 1 | neiss2 23130 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 13 | 3adant3 1132 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
15 | 12, 14 | sstrd 4019 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ ∪ 𝐽) |
16 | 1 | isnei 23132 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑅 ⊆ ∪ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 11, 15, 16 | syl2anc 583 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 3, 10, 17 | mpbir2and 712 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∃wrex 3076 ⊆ wss 3976 ∪ cuni 4931 ‘cfv 6573 Topctop 22920 neicnei 23126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-top 22921 df-nei 23127 |
This theorem is referenced by: neips 23142 neissex 23156 |
Copyright terms: Public domain | W3C validator |