![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neiss | Structured version Visualization version GIF version |
Description: Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 ⊆ 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.) |
Ref | Expression |
---|---|
neiss | ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | neii1 23129 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑁 ⊆ ∪ 𝐽) |
3 | 2 | 3adant3 1131 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ⊆ ∪ 𝐽) |
4 | neii2 23131 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) | |
5 | 4 | 3adant3 1131 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
6 | sstr2 4001 | . . . . . 6 ⊢ (𝑅 ⊆ 𝑆 → (𝑆 ⊆ 𝑔 → 𝑅 ⊆ 𝑔)) | |
7 | 6 | anim1d 611 | . . . . 5 ⊢ (𝑅 ⊆ 𝑆 → ((𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
8 | 7 | reximdv 3167 | . . . 4 ⊢ (𝑅 ⊆ 𝑆 → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
9 | 8 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (∃𝑔 ∈ 𝐽 (𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁))) |
10 | 5, 9 | mpd 15 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)) |
11 | simp1 1135 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝐽 ∈ Top) | |
12 | simp3 1137 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ 𝑆) | |
13 | 1 | neiss2 23124 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆)) → 𝑆 ⊆ ∪ 𝐽) |
14 | 13 | 3adant3 1131 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑆 ⊆ ∪ 𝐽) |
15 | 12, 14 | sstrd 4005 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑅 ⊆ ∪ 𝐽) |
16 | 1 | isnei 23126 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑅 ⊆ ∪ 𝐽) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
17 | 11, 15, 16 | syl2anc 584 | . 2 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → (𝑁 ∈ ((nei‘𝐽)‘𝑅) ↔ (𝑁 ⊆ ∪ 𝐽 ∧ ∃𝑔 ∈ 𝐽 (𝑅 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁)))) |
18 | 3, 10, 17 | mpbir2and 713 | 1 ⊢ ((𝐽 ∈ Top ∧ 𝑁 ∈ ((nei‘𝐽)‘𝑆) ∧ 𝑅 ⊆ 𝑆) → 𝑁 ∈ ((nei‘𝐽)‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ∃wrex 3067 ⊆ wss 3962 ∪ cuni 4911 ‘cfv 6562 Topctop 22914 neicnei 23120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-top 22915 df-nei 23121 |
This theorem is referenced by: neips 23136 neissex 23150 |
Copyright terms: Public domain | W3C validator |