MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnei Structured version   Visualization version   GIF version

Theorem isnei 23000
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isnei ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔   𝑔,𝑋

Proof of Theorem isnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = 𝐽
21neival 22999 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
32eleq2d 2815 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)}))
4 sseq2 4004 . . . . . . 7 (𝑣 = 𝑁 → (𝑔𝑣𝑔𝑁))
54anbi2d 629 . . . . . 6 (𝑣 = 𝑁 → ((𝑆𝑔𝑔𝑣) ↔ (𝑆𝑔𝑔𝑁)))
65rexbidv 3174 . . . . 5 (𝑣 = 𝑁 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
76elrab 3681 . . . 4 (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
81topopn 22801 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 5340 . . . . . 6 (𝑋𝐽 → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
108, 9syl 17 . . . . 5 (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
1110anbi1d 630 . . . 4 (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
127, 11bitrid 283 . . 3 (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1312adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
143, 13bitrd 279 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wrex 3066  {crab 3428  wss 3945  𝒫 cpw 4598   cuni 4903  cfv 6542  Topctop 22788  neicnei 22994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-top 22789  df-nei 22995
This theorem is referenced by:  neiint  23001  isneip  23002  neii1  23003  neii2  23005  neiss  23006  neips  23010  opnneissb  23011  opnssneib  23012  ssnei2  23013  innei  23022  neitr  23077  neitx  23504  neifg  35849  islptre  45001  sepfsepc  47940
  Copyright terms: Public domain W3C validator