MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnei Structured version   Visualization version   GIF version

Theorem isnei 22607
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
isnei ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔   𝑔,𝑋

Proof of Theorem isnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = βˆͺ 𝐽
21neival 22606 . . 3 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((neiβ€˜π½)β€˜π‘†) = {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)})
32eleq2d 2820 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
4 sseq2 4009 . . . . . . 7 (𝑣 = 𝑁 β†’ (𝑔 βŠ† 𝑣 ↔ 𝑔 βŠ† 𝑁))
54anbi2d 630 . . . . . 6 (𝑣 = 𝑁 β†’ ((𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣) ↔ (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
65rexbidv 3179 . . . . 5 (𝑣 = 𝑁 β†’ (βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣) ↔ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
76elrab 3684 . . . 4 (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)))
81topopn 22408 . . . . . 6 (𝐽 ∈ Top β†’ 𝑋 ∈ 𝐽)
9 elpw2g 5345 . . . . . 6 (𝑋 ∈ 𝐽 β†’ (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 βŠ† 𝑋))
108, 9syl 17 . . . . 5 (𝐽 ∈ Top β†’ (𝑁 ∈ 𝒫 𝑋 ↔ 𝑁 βŠ† 𝑋))
1110anbi1d 631 . . . 4 (𝐽 ∈ Top β†’ ((𝑁 ∈ 𝒫 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁)) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
127, 11bitrid 283 . . 3 (𝐽 ∈ Top β†’ (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)} ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
1312adantr 482 . 2 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)} ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
143, 13bitrd 279 1 ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆƒwrex 3071  {crab 3433   βŠ† wss 3949  π’« cpw 4603  βˆͺ cuni 4909  β€˜cfv 6544  Topctop 22395  neicnei 22601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-top 22396  df-nei 22602
This theorem is referenced by:  neiint  22608  isneip  22609  neii1  22610  neii2  22612  neiss  22613  neips  22617  opnneissb  22618  opnssneib  22619  ssnei2  22620  innei  22629  neitr  22684  neitx  23111  neifg  35256  islptre  44335  sepfsepc  47560
  Copyright terms: Public domain W3C validator