![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isnei | Structured version Visualization version GIF version |
Description: The predicate "the class π is a neighborhood of π". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) |
Ref | Expression |
---|---|
neifval.1 | β’ π = βͺ π½ |
Ref | Expression |
---|---|
isnei | β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neifval.1 | . . . 4 β’ π = βͺ π½ | |
2 | 1 | neival 22606 | . . 3 β’ ((π½ β Top β§ π β π) β ((neiβπ½)βπ) = {π£ β π« π β£ βπ β π½ (π β π β§ π β π£)}) |
3 | 2 | eleq2d 2820 | . 2 β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β π β {π£ β π« π β£ βπ β π½ (π β π β§ π β π£)})) |
4 | sseq2 4009 | . . . . . . 7 β’ (π£ = π β (π β π£ β π β π)) | |
5 | 4 | anbi2d 630 | . . . . . 6 β’ (π£ = π β ((π β π β§ π β π£) β (π β π β§ π β π))) |
6 | 5 | rexbidv 3179 | . . . . 5 β’ (π£ = π β (βπ β π½ (π β π β§ π β π£) β βπ β π½ (π β π β§ π β π))) |
7 | 6 | elrab 3684 | . . . 4 β’ (π β {π£ β π« π β£ βπ β π½ (π β π β§ π β π£)} β (π β π« π β§ βπ β π½ (π β π β§ π β π))) |
8 | 1 | topopn 22408 | . . . . . 6 β’ (π½ β Top β π β π½) |
9 | elpw2g 5345 | . . . . . 6 β’ (π β π½ β (π β π« π β π β π)) | |
10 | 8, 9 | syl 17 | . . . . 5 β’ (π½ β Top β (π β π« π β π β π)) |
11 | 10 | anbi1d 631 | . . . 4 β’ (π½ β Top β ((π β π« π β§ βπ β π½ (π β π β§ π β π)) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
12 | 7, 11 | bitrid 283 | . . 3 β’ (π½ β Top β (π β {π£ β π« π β£ βπ β π½ (π β π β§ π β π£)} β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
13 | 12 | adantr 482 | . 2 β’ ((π½ β Top β§ π β π) β (π β {π£ β π« π β£ βπ β π½ (π β π β§ π β π£)} β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
14 | 3, 13 | bitrd 279 | 1 β’ ((π½ β Top β§ π β π) β (π β ((neiβπ½)βπ) β (π β π β§ βπ β π½ (π β π β§ π β π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwrex 3071 {crab 3433 β wss 3949 π« cpw 4603 βͺ cuni 4909 βcfv 6544 Topctop 22395 neicnei 22601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-top 22396 df-nei 22602 |
This theorem is referenced by: neiint 22608 isneip 22609 neii1 22610 neii2 22612 neiss 22613 neips 22617 opnneissb 22618 opnssneib 22619 ssnei2 22620 innei 22629 neitr 22684 neitx 23111 neifg 35256 islptre 44335 sepfsepc 47560 |
Copyright terms: Public domain | W3C validator |