MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnei Structured version   Visualization version   GIF version

Theorem isnei 23016
Description: The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
neifval.1 𝑋 = 𝐽
Assertion
Ref Expression
isnei ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Distinct variable groups:   𝑔,𝐽   𝑔,𝑁   𝑆,𝑔   𝑔,𝑋

Proof of Theorem isnei
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 neifval.1 . . . 4 𝑋 = 𝐽
21neival 23015 . . 3 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((nei‘𝐽)‘𝑆) = {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)})
32eleq2d 2817 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ 𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)}))
4 sseq2 3961 . . . . . . 7 (𝑣 = 𝑁 → (𝑔𝑣𝑔𝑁))
54anbi2d 630 . . . . . 6 (𝑣 = 𝑁 → ((𝑆𝑔𝑔𝑣) ↔ (𝑆𝑔𝑔𝑁)))
65rexbidv 3156 . . . . 5 (𝑣 = 𝑁 → (∃𝑔𝐽 (𝑆𝑔𝑔𝑣) ↔ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
76elrab 3647 . . . 4 (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)))
81topopn 22819 . . . . . 6 (𝐽 ∈ Top → 𝑋𝐽)
9 elpw2g 5271 . . . . . 6 (𝑋𝐽 → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
108, 9syl 17 . . . . 5 (𝐽 ∈ Top → (𝑁 ∈ 𝒫 𝑋𝑁𝑋))
1110anbi1d 631 . . . 4 (𝐽 ∈ Top → ((𝑁 ∈ 𝒫 𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁)) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
127, 11bitrid 283 . . 3 (𝐽 ∈ Top → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
1312adantr 480 . 2 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ {𝑣 ∈ 𝒫 𝑋 ∣ ∃𝑔𝐽 (𝑆𝑔𝑔𝑣)} ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
143, 13bitrd 279 1 ((𝐽 ∈ Top ∧ 𝑆𝑋) → (𝑁 ∈ ((nei‘𝐽)‘𝑆) ↔ (𝑁𝑋 ∧ ∃𝑔𝐽 (𝑆𝑔𝑔𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3902  𝒫 cpw 4550   cuni 4859  cfv 6481  Topctop 22806  neicnei 23010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-top 22807  df-nei 23011
This theorem is referenced by:  neiint  23017  isneip  23018  neii1  23019  neii2  23021  neiss  23022  neips  23026  opnneissb  23027  opnssneib  23028  ssnei2  23029  innei  23038  neitr  23093  neitx  23520  neifg  36404  islptre  45658  sepfsepc  48958
  Copyright terms: Public domain W3C validator