| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfielex | Structured version Visualization version GIF version | ||
| Description: If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| Ref | Expression |
|---|---|
| nfielex | ⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0fi 8990 | . . . 4 ⊢ ∅ ∈ Fin | |
| 2 | eleq1 2816 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin)) | |
| 3 | 1, 2 | mpbiri 258 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 ∈ Fin) |
| 4 | 3 | con3i 154 | . 2 ⊢ (¬ 𝐴 ∈ Fin → ¬ 𝐴 = ∅) |
| 5 | neq0 4311 | . 2 ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 6 | 4, 5 | sylib 218 | 1 ⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∅c0 4292 Fincfn 8895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-ord 6323 df-on 6324 df-lim 6325 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-om 7823 df-en 8896 df-fin 8899 |
| This theorem is referenced by: cusgrfi 29439 esumcst 34046 topdifinffinlem 37328 |
| Copyright terms: Public domain | W3C validator |