MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfielex Structured version   Visualization version   GIF version

Theorem nfielex 9163
Description: If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Assertion
Ref Expression
nfielex 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nfielex
StepHypRef Expression
1 0fi 8967 . . . 4 ∅ ∈ Fin
2 eleq1 2816 . . . 4 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
31, 2mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
43con3i 154 . 2 𝐴 ∈ Fin → ¬ 𝐴 = ∅)
5 neq0 4303 . 2 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
64, 5sylib 218 1 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wex 1779  wcel 2109  c0 4284  Fincfn 8872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-ord 6310  df-on 6311  df-lim 6312  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-om 7800  df-en 8873  df-fin 8876
This theorem is referenced by:  cusgrfi  29408  esumcst  34046  topdifinffinlem  37341
  Copyright terms: Public domain W3C validator