MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfielex Structured version   Visualization version   GIF version

Theorem nfielex 9158
Description: If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Assertion
Ref Expression
nfielex 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nfielex
StepHypRef Expression
1 0fi 8964 . . . 4 ∅ ∈ Fin
2 eleq1 2819 . . . 4 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
31, 2mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
43con3i 154 . 2 𝐴 ∈ Fin → ¬ 𝐴 = ∅)
5 neq0 4299 . 2 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
64, 5sylib 218 1 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wex 1780  wcel 2111  c0 4280  Fincfn 8869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-ord 6309  df-on 6310  df-lim 6311  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-om 7797  df-en 8870  df-fin 8873
This theorem is referenced by:  cusgrfi  29437  esumcst  34076  topdifinffinlem  37391
  Copyright terms: Public domain W3C validator