MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfielex Structured version   Visualization version   GIF version

Theorem nfielex 9298
Description: If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.)
Assertion
Ref Expression
nfielex 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nfielex
StepHypRef Expression
1 0fin 9196 . . . 4 ∅ ∈ Fin
2 eleq1 2817 . . . 4 (𝐴 = ∅ → (𝐴 ∈ Fin ↔ ∅ ∈ Fin))
31, 2mpbiri 258 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
43con3i 154 . 2 𝐴 ∈ Fin → ¬ 𝐴 = ∅)
5 neq0 4346 . 2 𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
64, 5sylib 217 1 𝐴 ∈ Fin → ∃𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  wex 1774  wcel 2099  c0 4323  Fincfn 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-clab 2706  df-cleq 2720  df-clel 2806  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-om 7871  df-en 8965  df-fin 8968
This theorem is referenced by:  cusgrfi  29285  esumcst  33682  topdifinffinlem  36826
  Copyright terms: Public domain W3C validator